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Abstract 
Rapid urbanisation is leading to devastating decreases in global biodiversity. While 

cities expand economic opportunities and foster diversity and inclusion for humans, the 
conversion of land into urban space is one of the primary drivers of biodiversity loss around 
the world. To develop cities that can provide habitats for all living species, we must better 
understand the influence of urbanisation on biodiversity. This study has two focuses: global 
insect biodiversity and London butterfly biodiversity, each in relation to the challenges 
presented to them by different urbanisation variables: impervious surface area, artificial 
light at night and land cover. These relationships were studied with regression analysis and 
modelled with generalised linear mixed effects models. At the global level, only certain land 
uses exerted a significant influence over changes in insect biodiversity, with signals from the 
urbanisation variables being too weak to draw any conclusions regarding their impact. In the 
London case study, butterfly species richness fluctuated significantly with changes in the 
value of each urbanisation variable, as well as changes in land cover. This study calls 
attention to the importance of context when studying urbanisation’s impact on insect 
biodiversity. Though drawing patterns at the global scale was largely precluded due to 
external variables, at the single-city level butterfly species richness was determined by both 
landscape and local conditions. This study contributes to building our understanding of how 
changes in the built and natural environment can impact biodiversity, a crucial piece of 
knowledge in our increasingly urban world.  
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Glossary of Terms 
 
Artificial Light at Night (ALAN): The presence of human-made light in the environment 
during nighttime hours, usually associated with urban and suburban areas. ALAN can disrupt 
natural light-dark cycles and affect wildlife behaviour and ecosystems. 
 
Backwards stepwise selection: A statistical method for model selection that starts with all 
predictor variables and iteratively removes the least significant variable until all remaining 
variables are statistically significant. This was the method used for model selection during 
statistical analysis. 
 
Chi-squared (χ2): A statistical test used to determine the difference between the expected 
and observed outcomes of different variables. This value is used to determine the 
significance of a variable in a statistical model. 
 
Degrees of freedom: In statistics, the maximum number of independent variables used to 
calculate a statistic, often referred to in relation to χ2 values. 
 
Gaussian distribution: Also known as the normal distribution, it is a symmetric probability 
distribution that follows a bell-shaped curve. It is often used to model natural phenomena in 
various fields, including biology and ecology. 
 
GeoTIFF: A file format for storing georeferenced raster imagery. It embeds geographic 
information within a TIFF file, allowing for spatial analysis and mapping. 
 
Heteroscedasticity: occurs when the standard errors of a variable are not constant over 
time 
 
Impervious Surface Area (ISA): The percentage of land covered by impenetrable surfaces 
such as buildings, roads, and parking lots, preventing water infiltration into the soil. ISA is 
associated with urban development and pollution of waterways due to run-off. 
 
Negative Binomial Model: A discrete probability distribution used for modelling count 
variables. It is a generalisation of the Poisson regression, used when the variance in the data 
exceeds the mean. It is often used for overdispersed count data. 
 
Overdispersion: when the variance of the response variable is greater than what is 
predicted by the statistical model. 
 
p-value: The probability of obtaining the observed results, and that there is a relationship 
between the two variables being studied. It is used to determine the statistical significance 
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of results, with lower values signifying greater statistical significance. P-values of 0.05 or 
lower are generally considered significant. 
 
Poisson distribution: a discrete distribution that measures the probability of a given number 
of events happening in a specified time period. Poisson regressions are used to model count 
variables, assuming these variables occur with a known average rate, and independently of 
the time since the last event. 
 
Raster: A gridded matrix of cells (or pixels) organized into rows and columns, where each 
cell contains a value representing information, such as elevation, temperature, or land cover 
type. In this study, all rasters contain geographic/spatial information. 
 
Shapefile: A geospatial data format for geographic information system (GIS) software. It 
stores the geometry and attribute information for spatial features like points, lines, and 
polygons. 
 
Spatial join: A GIS operation that appends data from one feature layer to another based on 
the spatial relationship between the features, such as intersection or proximity. This paper 
references ‘spatial joins’ when referring to joining two sets of data, generally urbanisation 
data to biodiversity data in their spatial formats. 
 
Species Abundance: The number of individuals of a particular species in a defined area or 
community. 
 
Species Richness: The number of different species represented in an ecological community, 
landscape, or region.  
 
Urban Heat Island (UHI): An area (usually within a city) that is significantly warmer than its 
surrounding rural areas due to human activities and urban development, characterized by 
higher surface and atmospheric temperatures. 
 
Zero-inflation: When a data set has more zeros than expected by a Poisson 
distribution. The word "inflation" emphasizes that the probability mass at zero is greater 
than what a standard parametric distribution would allow. Zero-inflation is a common 
symptom of overdispersion, and accounting for zero-inflation doesn't always remove 
overdispersion. 
 
 
 
 
 
 



 8 

List of Abbreviations 
ALAN – Artificial Night At Light 
BC – Butterfly Conservation 
BNM – Butterflies for the New Millennium 
GHSL – Global Human Settlement Layer 
GI – Green Infrastructure 
GLA – Greater London Authority 
ISA - Impervious Surface Area 
IUCN – International Union for the Conservation of Nature  
PREDICTS - Projecting Responses of Ecological Diversity In Changing Terrestrial Systems 
UHI – Urban Heat Island 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 9 

List of Figures and Tables 
Unless otherwise stated, all figures, tables and visualisation were created by the author. 
 
Figure 1: Map of global insect study sites from the PREDICTS database……………….…………… 24 

Figure 2: Map of global of artificial light at night………………………………………………………………. 26 

Figure 3: Map of global built-up cover………………………….…………………………………….…………….. 27 

Figure 4: Distribution of global UHI data matched to insect sites….…………………………………… 28 

Figure 5: Most recorded butterfly species…………………………………………………………………………. 30 

Figure 6: Distribution of butterfly sites in Greater London……….……………………………………….. 31 

Figure 7: Land Use Consultants’ nighttime skies colour bands …………………………………...……. 33 

Figure 8: Map of artificial light at night in the UK……………………………………………………..………. 34 

Figure 9: Built-up cover in Greater London……………………………………………………….………………. 35 

Figure 10: Green Cover Map of London, GLA…………………………………………………………………….. 37 

Figure 11: Distribution of land cover in Greater London………………………………………………..….. 38 

Figure 12: Predominant land cover of butterfly sites…………………………………………………..……. 39 

Figure 13: Effects of land use on global insect abundance and richness…………………..……….. 41 

Figure 14: Impacts of urbanisation on butterfly species richness in London……………..………. 43 

Figure 15: Extreme light pollution at butterfly sites in Greater London………………………..…… 46 

Figure 16: Green cover plot from negative binomial model………………………………………………. 47 

Figure 17: Ward-level green cover in Greater London…………………………………………………….… 48 

 
Table 1: Predominant land cover categories for butterfly sites……………………………………….… 39 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 10 

Acknowledgments 
 
A big thank you to my adviser, Dr Charlie Outhwaite, for her time, support and guidance 
throughout this process.  
 
Thank you to my UCL professors and classmates for introducing me to ideas, concepts and 
literature that inspired me. 
 
Thank you to Butterfly Conservation for sharing their data with me so I could study this 
beautiful species. 
 
Thank you to my family for everything. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 11 

1 | INTRODUCTION 
 
Economic opportunities, arts and culture, and the broad acceptance of different 

religions and ethnicities found in cities all contribute to the increasing urbanisation of our 
world. Today, roughly 56% of the world’s population live in urban areas; by 2050, that share 
is expected to increase to 70% of the total global population (World Bank, 2024). In many 
ways, living in a city is considered the more environmentally-friendly option: city-dwellers 
tend to walk, cycle or take public transport, whereas those in the countryside often need to 
drive to get around. Urban accommodation is smaller per capita than rural housing, 
requiring less energy to heat in winter and cool in summer. As the population grows—which 
it is projected to do until at least 2080—and the development needs of many around the 
world increase, it is considered more ecologically sound to build up rather than out, to 
develop on land that has already been converted from primary vegetation, rather than 
exploiting wild habitat anew (Dale and Newman, 2009). In this way, urban development and 
expansion could be seen as less destructive for wildlife than development alternatives in 
rural areas. 

Despite this, through industry, transport and the concentration of wealth that 
accumulates in urban areas, cities account for 70% of the total emissions of greenhouse 
gases (Environment, 2017), which, by changing our climate, intensifies weather patterns, 
modifies habitats, and warms the planet and seas, disrupting diverse biological functions 
(Otero et al., 2020). It is estimated that 24% of the species on the International Union for 
the Conservation of Nature (IUCN) Red List are threatened by commercial and residential 
infrastructure expansion (zu Ermgassen et al., 2022), which is unavoidable as millions of 
people look to settle in urban areas. Other indicators of urbanisation—such as light 
pollution, impervious surfaces and habitat fragmentation—have been directly linked to 
wildlife and biodiversity loss (Fenoglio et al., 2021).  

Due to urbanisation and humans’ unrelenting pressure on the environment, the 
world’s biodiversity is under threat. There are more than 157,000 species on the IUCN Red 
List, of which over 45,000 are species threatened with extinction. This includes 12% of birds, 
26% of mammals, 34% of conifer trees and 36% of reef corals (The IUCN Red List of 
Threatened Species, 2024). Though difficult to quantify, it is estimated that the current rate 
of species extinction is at least tens—and up to hundreds—of times higher than the average 
rate over the past ten million years. Furthermore, the rate of extinction is accelerating 
(Ceballos et al., 2015). One class of species particularly vulnerable to our changing climate 
and urbanising world are insects. Insects make up 75% of all plant and animal species 
globally (van der Sluijs, 2020), play vitally important roles in our lives, but are under severe 
threat, disappearing at alarming rates around the world (Sánchez-Bayo and Wyckhuys, 
2019; van der Sluijs, 2020; Wagner, 2020). The IUCN has named ‘housing and urban areas’ 
as the number one threat to insects (The IUCN Red List of Threatened Species, 2024), and it’s 
estimated that roughly one third of all insect species are threatened, with as many as 41% 
suffering some level of decline (Sánchez-Bayo and Wyckhuys, 2019). 
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Within the planetary boundaries framework, biodiversity is considered one of the 
processes vital to maintaining a stable Earth system (Richardson et al., 2023). Continued 
biodiversity loss due to human activity places undue strain on our planet, which already 
suffers from a host of anthropogenic pressures, such as land-use change and climate 
change, both of which are connected to genetic diversity of species. Healthy, biodiverse 
landscapes are crucial for the planet and all living species to thrive, and they provide a wide 
range of ecosystem services, such as water filtration, air purification, carbon storage, 
nutrient cycling, pollination, natural pest control, and climate stability (Alho, 2008).  

It may be unsurprising, then, that biodiversity has been positively correlated with 
gains in human health and wellbeing. The more biodiverse the planet’s ecosystems, the 
better able they are to provide humans with some of their core needs, as defined by 
Maslow (Maslow, 1943). At a basic level, ecosystems supply our physiological needs: food, 
water, shelter, as well as the air we breathe. Going one step up, healthy ecosystems can 
provide us with safety and security, such as medicine and jobs, while a loss in biodiversity 
can lead to an increase in the transmission of infectious diseases (Keesing et al., 2010). 
Finally, interactions with nature—often, explicitly biodiverse nature—bestows wide-ranging 
social, cultural and psychological benefits, including increased self-esteem, social cohesion 
and spiritual wellbeing (Sandifer, Sutton-Grier and Ward, 2015). In cities in particular, time 
spent in more biodiverse landscapes—as measured by species richness of plants, birds and 
butterflies—is associated with greater psychological benefit than time spent in less 
biodiverse parks and green spaces (Fuller et al., 2007). 

Finally, biodiversity has intrinsic value, just like any living thing; much of it existed 
long before humans did, and it should continue to exist long after. Protecting biodiversity is 
our imperative for the 21st century. The challenge then becomes how to fulfil the needs of 
humans—particularly those in regions undergoing rapid development—while ensuring the 
highest levels of biodiversity as possible. The world must continue to urbanise to meet the 
needs of the growing human population, yet the number one driver of habitat loss around 
the world is land use change (Hanski, 2011), including the conversion of land into urban 
space. As cities grow, humans displace wildlife, leaving them with nowhere to live. But what 
if cities could be habitats not only for people, but for wildlife too? In an increasingly 
urbanised world, understanding patterns and drivers of urban biodiversity loss will be 
necessary for developing healthy, sustainable cities for all living species.  

Public awareness of both biodiversity in general, and biodiversity in cities specifically, 
has grown in recent years, and there has been increasing recognition of the importance of 
urban spaces for wildlife ‘as cities become viewed as novel ecosystems rather than 
anthropogenic sinks devoid of nature’ (Collins, Magle and Gallo, 2021, p.56). This 
recognition is vital so that public and private entities may work together in the important 
task of building the kinds of places that benefit people as well as wildlife. Cities could 
provide important habitat in a world becoming increasingly urbanised, but as yet there is a 
knowledge gap concerning the role of urban systems to protect and conserve biodiversity. 
City planners and government need to know how biodiversity responds to different forms of 
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urbanisation, but more research is needed to make recommendations to protect 
biodiversity in urban settings. 

This study aims to fill that gap by identifying and better understanding the 
relationship between insect biodiversity and urbanisation. Using a global database of 
biodiversity surveys (the PREDICTS database), I analyse the impact of key urbanisation 
metrics and land use on insect biodiversity at the global scale. Datasets for artificial light at 
night and impervious surface area serve as proxies for urbanisation and human pressures on 
the environment. After modelling the effects of urbanisation on insect biodiversity globally, I 
zoom into the local level and use London as a case study to measure the impacts of 
urbanisation drivers on butterfly biodiversity. Through my research, I seek to deepen our 
understanding regarding the extent to which cities can act as habitats for wildlife and 
contribute positively to biodiversity, and more specifically, how we can develop cities in 
ways sensitive to insect populations. My research will add to the emerging field of urban 
ecology and the growing body of work assessing the impact of urbanisation on insect 
biodiversity.  

There are two main questions this study seeks to answer:  
1) How does global insect biodiversity respond to light pollution and impervious 

surface area, two measurable drivers of urbanisation?  
2) How is butterfly biodiversity in London impacted by features of the natural, built 

and social environment?  
The global study looks at both species richness and total species abundance, while 

the London study examines only total abundance. These questions will also be enriched by 
examining interactions between land use and urbanisation drivers. Armed with this 
knowledge, how might we develop more sensitive cities, and incorporate nature into their 
planning? It is crucially important that decision-makers and stakeholders have as much data 
available to them as possible, to help guide the development and preservation of wildlife-
friendly, biodiverse cities. 

Based on the findings of previous studies, overall biodiversity is expected to decline 
with increasing levels of urbanisation (Faeth, Bang and Saari, 2011). However, some 
studies—specifically on Aves and Arthropods—showed an increase in overall abundance, 
but a decrease in species richness, due to an increase in urban generalist or synanthropic 
species, but a decrease in specialist species. This study will explore these findings, and 
assess the hypothesis that overall biodiversity declines with urbanisation. Further, it seeks 
to either confirm or challenge some of the existing thinking that landscapes heavily 
dominated by humans are depleted of wildlife (Soanes et al., 2019).  

Section 2 of this paper explores a wide range of concepts relating to urban ecology, 
briefly delving into its history and covering the theoretical basis upon which it was built. This 
section also looks at the concept of cities as habitats and explores some of the unique 
features of urban landscapes, such as brownfield sites. There is a subsection on the 
implications of urban ecology research on urban planning, and how the existing knowledge 
can be used to inform these decisions. I expand on the state of urban biodiversity research 
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today and then home in on insects and butterflies as the focus of this paper. Section 3 
describes in detail my methodology for analysing both global and local datasets using 
RStudio, as well as the rationale behind the data and any key assumptions made in the 
process. In section 4, I present the results from the study, and I discuss and interrogate the 
outcomes in section 5, where further research is suggested and possible policy implications 
and recommendations are presented, along with the limitations I encountered in my study 
and analysis. Section 6 concludes the paper and wraps up my findings. 

  
 

2 | LITERATURE REVIEW  
 
The following review explores common features of urban environments that 

influence biodiversity and identifies factors that are later addressed in the analysis. At the 
outset of research, several broad topics emerged relating to urban biodiversity: gardens, 
birds, brownfield/wasteland/vacant lots, and green infrastructure. There is a large body of 
work on frameworks, recommendations and lessons using landscape ecology and its related 
theories to understand urban biodiversity patterns and behaviour, as well as the potential of 
these frameworks to influence urban planning. There is also substantial research on ‘softer’ 
components, such as the psychological benefits of biodiversity and urban green space, and 
an exploration of human perceptions of biodiversity in the city. The number of papers 
returned from searches including the term ‘biodiversity’ when paired with the words ‘urban’ 
or ‘cities’ was significantly higher than when these same words were paired with the term 
‘wildlife conservation’. This might indicate that, though there has been substantial research 
on trends and observations of biodiversity in urban areas, ‘wildlife conservation’ is still seen 
as something that is done outside of cities.  
 
2.1 | The nature-culture dualism 

Urban ecology as a disciplinary field did not gain serious attention until the 1970s 
(Magle et al., 2012). For most of the 19th and 20th centuries, wildlife—at least as conceived 
in much of Europe and North America—was something that happened ‘out there,’ away 
from the hustle and bustle of city life (Adams, 2013). At first, nature was feared—it was 
rough and dangerous and could bring a person’s life to a swift close—and then it was 
revered, beautiful and mysterious, the subject of poetry and lore (Adams, 2013). But still, it 
was ‘away’: somewhere to visit and then leave behind. This kind of thinking pitted 
wilderness and humanity against each another and created a space for the nature-culture 
dualism that dominated the European imagination for centuries (Haila, 2000). It was from 
within this chasm that European settlers felt empowered to colonise ‘wild’, ‘empty’ land, to 
preserve in all its ‘pristine’ glory, and to remove the very people who had stewarded it for 
generations (Adams, 2013). This systematic separation of natural processes from humanity, 
of ‘putting nature in a box’, was painfully wrought—and with lasting repercussions—in the 
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great expanses of the western United States, whose national parks are an embodiment of 
our obsession with—and misunderstanding of—nature. 

In the late 1800s, Yellowstone National Park in Wyoming, as well as other parks 
around the United States, were created with an explicit goal of providing an experience of 
‘uninhabited wilderness’ to wealthy tourists (Spence, 1999). What was perhaps less explicit 
was the forced removal of native people from this land, and the acknowledgment that the 
land that was viewed by Europeans as pristine wilderness was in fact shaped for millennia 
by the very people they were removing (Spence, 1999). In recent decades, this fatal 
misunderstanding has been recognised, and many wildlife organisations acknowledge their 
historical role in excluding indigenous peoples from conservation efforts on their own land 
(Lee, 2016). Today, the rhetoric around nature conservation has shifted, and rather than 
further embedding the nature-culture dichotomy into our ways of thinking, the 2022 
Kunming-Montreal Global Biodiversity Framework from the Convention on Biological 
Diversity frames indigenous people as ‘custodians of biodiversity’ (‘Kunming-Montreal 
Global Biodiversity Framework’, 2022), recognising the value of people in the natural 
landscape.  

The latter part of the 20th century saw ecologists growing increasingly concerned 
with the impacts of humans on the natural world, and with this, their attitudes towards 
studying urban ecosystems changed (Niemelä, 1999b). Since the 1990s, publications 
focusing on urban wildlife have increased dramatically, and new educational programmes 
have emerged (Collins, Magle and Gallo, 2021), helping to legitimise the field of urban 
ecology. Yet as recently as 2001, urban ecology was viewed as a ‘soft science', with 
conservation measures carried out in urban areas described by professional ecologists as 
‘highly experimental and without any guarantee of success’ (Harrison and Davies, 2002, 
p.103). Government funding of urban biodiversity studies lags well behind those from 
academic institutions, with the majority of public funds for wildlife conservation funnelled 
to rural areas (Collins, Magle and Gallo, 2021).  

Though the nature-culture dualism has weakened significantly, its roots are still 
embedded in much of the environmental literature, and in many minds (Haila, 2000). 
Misconceptions about nature conservation abound, with human-dominated, urban 
landscapes considered far less valuable, in conservation terms, than their sparsely 
populated, rural counterparts—a narrative that pervades ‘policy, practice and the public 
psyche’ (Soanes et al., 2019). While it is true that urbanisation poses real and significant 
threats to biodiversity, there has been too much focus on the negative impacts of 
urbanisation, with not enough research or effort being funnelled into the opportunities it 
might create through intentional design (Spotswood 2021). Rather than solely looking to our 
‘wild’ landscapes to help us conserve some of our rare and threatened species, we might 
think to turn our focus inward, to the very landscapes we inhabit, so we might harness the 
positive impacts of urbanisation into a more thoughtful, inclusive conservation (Lepczyk, 
2023). The expansion of urban ecology as a legitimate field of study is part of the process of 
weakening the nature-culture dualism, as we acknowledge that ‘wilderness’ and humanity 
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are not distinct entities; in today’s rapidly urbanising world, they must necessarily interact 
and be treated as connected phenomena. 
 
2.2 Urban ecological theory 

Urban ecology does not have an explicit theoretical basis, but borrows from various 
existing ecological theories in order to make sense of urban ecosystem dynamics 
(Spotswood et al., 2021). Though traditionally the natural and social sciences have been 
siloed, urban ecology demands their intermingling, and the 1990s gave rise to an integration 
of these two sides, and a recognition of the importance of both (Blood, 1994). Thus 
emerged a ‘socioecology’ of urban systems, whereby social, cultural and economic dynamics 
are connected to physical and biological processes (PickeK et al., 1997). 

In early work, ecologists tried to understand the patchy nature of urban green 
spaces by applying Island Biogeography Theory, claiming that habitats within cities acted 
like islands and responded to external factors in the same way. Faeth and Kane, and David 
and Glick, who first suggested this analogy in their papers published on the topic in 1978, 
introduced us to relevant terminology of urban ecology: that of ‘habitat islands,’ ‘stepping 
stones’ and wildlife ‘corridors’ (Davis and Glick, 1978; Faeth and Kane, 1978). Conceiving of 
urban spaces in this way continues to influence how we think about urban systems and 
habitats today. Many studies support the use of Island Biogeography Theory as a framework 
for urban ecology through their findings of a positive relationships between habitat ‘patch’ 
size and species richness, for example that by Beninde et al (2015) (Beninde, Veith and 
Hochkirch, 2015). 

Another theoretical underpinning of urban ecology is Metapopulation Theory, which 
hypothesises frequent local species extinction at the habitat patch level, coupled with 
species recolonisation at the landscape level (Wu, 2008). This dynamic highlights the 
importance of connectivity between habitat patches to support viable populations of 
species (Wu, 2008). Breuste et al. draws connections between Metapopulation Theory and 
species dispersal in urban areas, where the patchiness of habitats—disconnected parks, 
gardens and small green spaces—creates risks for certain species, especially those with low 
mobility (Breuste, Niemelä and Snep, 2008). Metapopulation Theory, then, acknowledges 
Island Biogeography dynamics, but expands upon the theory by highlighting the importance 
of the wider landscape in determining species richness (Lepczyk et al., 2017).  

Understanding the impact of these spatial ecological concepts—local, patch effects 
vs. a larger landscape or ‘matrix’ model—on urban biodiversity is crucial, and ecologists 
need to better comprehend their relationship to one another in order to manage urban 
environments more effectively (Angold et al., 2006).  

Norton et al. explores this relationship through the lens of ‘city-level’ and ‘within-
city’ biodiversity. City-level biodiversity is analysed by looking at the city’s size—which can 
predict land use, resource flows and economic activity—its age, and context. A city’s context 
includes the composition of its native biodiversity, its climate, and the degradation of the 
surrounding area, all of which contribute to landscape-level dynamics. Within-city analysis 
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examines the finer-scale spatial variation across an urban area, as well as fragmentation and 
the ‘urban matrix.’ Temporal dynamics can also play a significant role in a city’s biodiversity, 
especially on smaller parcels of land, which tend to have more rapid turnover of 
management, from a park manager to an at-home gardener. Given that the type and quality 
of urban habitats are reliant on human desires—which can quickly change—they are 
frequently colonised by early-successional plant species that thrive in high-turnover 
landscapes. (Norton, Evans and Warren, 2016) 
 
2.3 Global biodiversity knowledge 

Urban biodiversity studies have expanded greatly in the past decade, but there is still 
a dearth of data describing global patterns and observations between different regions 
(Werner, 2011). This has led to a bias in our existing knowledge, with most of our studies 
originating in North America and Europe, from cities with major universities. This is hardly 
representative of the world’s biodiversity, nor of the world’s cities. Further, approximately 
66% of all papers published on urban biodiversity study birds and higher plant species only, 
neglecting the myriad other species that make up cities’ diverse assemblages. This 
geographic deficit is referenced by Collins and Beninde as well (Beninde, Veith and 
Hochkirch, 2015; Collins, Magle and Gallo, 2021), both noting that we have a significant 
knowledge gap for Asia, South American and Africa. This is problematic not only for the 
imbalance in our collective body of research, but also because these are the very continents 
that will experience the highest levels of urbanisation in the coming decades (Beninde, Veith 
and Hochkirch, 2015).  

For these quickly urbanising regions, the speed of change might introduce an 
additional variable to measure. In one study observing the decline of bird species in 
different regions around the world, it was found that the negative relationship between the 
extent of human settlement and bird species richness—essentially, the impact of 
urbanisation on biodiversity—was greater in many parts of Asia than it was in western 
Europe (Sultana, Corlatti and Storch, 2023). With large swathes of Asia’s population moving 
to cities in search of opportunity (as illustrated by the concept of the ‘arrival city’ – 
(Saunders, 2011)), this relationship could be indicative of the more destructive impact of a 
rapid urbanisation occurring in many regions in the global South. With less time to adapt to 
urbanisation’s heavy footprint, many species may find themselves at even greater risk. 
These geographic nuances make it even more essential that urban biodiversity research is as 
far-reaching and diverse as the species it aims to understand.  

 
2.4 Insect biodiversity 

Along with regional bias, the field of biodiversity research suffers from severe 
taxonomic bias, wherein some species receive great levels of aKenLon, while others don’t 
receive very much at all, prevenLng a holisLc view of biodiversity at the global level, and 
impeding coordinated conservaLon efforts (Troudet et al., 2017). The majority of this 
discrepancy is due to societal preference for some species over others, influencing the 
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direcLon of research and providing funding for parLcular areas of interest. For example, 
relaLve to the number of known species, the class Insecta is the most under-studied of all 
classes, whereas Aves has received outsize consideraLon. Bird species have been over-
represented in scienLfic and academic studies since the middle of the twenLeth century, 
and this excess—as well as insects’ shorxall—conLnues to grow. Perhaps as a direct result of 
this relaLve lack of focus on insect biodiversity, only about 10% of all insect species are even 
known by name, meaning that many of them are disappearing before we even know their 
importance (van der Sluijs, 2020). It is up to researchers to correct this bias and make more 
space for a diversity of research. Insects, though under-studied, are vital components of our 
natural world, making up nearly two-thirds of all terrestrial life on Earth (Sánchez-Bayo and 
Wyckhuys, 2019).  

Aside from the nearly $60 billion value that insects are esLmated to provide to the 
US economy alone (Losey and Vaughan, 2006), they are central to a wide range of ecological 
services upon which we are dependent, like pollinaLon, pest control, seed dispersal, and 
nutrient cycling (Scudder, 2017). Insects also tell us about the state of our environment and 
world. Insects are highly sensiLve to changes in their environment, and as they are the most 
abundant and widely distributed species found on the earth, in the air, and in water, they act 
as biological monitors across all habitats (Parikh, Rawtani and Khatri, 2021). Within this 
class, buKerflies are ozen used as bioindicators, as their environmental sensiLvity requires 
them to rapidly adapt and modify their behaviour, making them effecLve indicators of 
climate change (Vickery, 2008). In this way, buKerflies can act as a proxy for biodiversity and 
help scienLsts beKer understand the state of the health of the environment. Further, their 
high detectability qualifies them as suitable subjects of ciLzen science surveys, an 
increasingly important tool in measuring biodiversity over Lme (Cooper et al., 2024).  

In the UK, the climate is the main influencing factor for the extent of a buKerfly’s 
range—whether too warm in the south, or too cold in the north. Over the twenty-year 
period from 1988-2008, the average temperature in the midlands region of the UK increased 
by 1.5 degrees Celsius (Vickery, 2008). This meant that 25% of the buKerflies at their 
northern limit in the south of England were able to extend their limits northwards. However, 
‘colder’ buKerfly species like the Scotch Argus, already at their southern limit, lost ground, 
and had to decrease their ranges by up to 100km northward (Vickery, 2008). In the 
mountains of central Spain—where temperatures have risen on average 1.3 degrees C over a 
similar period—16 buKerfly species have receded into the mountains, moving to higher 
alLtudes and cooler temperatures (Vickery, 2008).Though it can be exciLng to see more 
buKerflies—and more species of buKerflies—in areas where they previous weren’t, they can 
only survive if they have suitable habitat, and in our urbanising world, this is becoming 
increasingly unlikely. While generalist species might be able to adapt, flying longer distances 
for suitable habitat, specialist species will find that habitat is either too fragmented, or no 
longer exists, leading to their local exLncLon (Vickery, 2008). 
 
2.5 Drivers of urbanisa\on 
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 In her 2021 paper, Fenoglio and her colleagues define five key drivers of urbanisation 
and identify them as the leading causes of biodiversity loss—specifically of terrestrial 
insects—in urban areas. These key metrics are outlined below (Fenoglio et al., 2021). 

1. Impervious surfaces: the sealing over of soils by impermeable substances, usually 
concrete. Impervious surfaces are considered a ‘transversal’ driver and are 
correlated with the other urbanisation drivers, influencing their intensity and impact 
on the landscape. Impervious surfaces block the pollutant processing completed by 
soil, contribute to waterway contamination through surface run-off, and are strongly 
correlated with urban heat islands (S.V. Chithra et al., 2015). 

2. Habitat fragmentation: the splintering and removal of habitat into smaller and more 
disconnected areas due to development, creating habitat patches that vary in size, 
quality and connectivity. Habitat loss through fragmentation impacts biodiversity 
directly—through decreases in species richness, abundance and genetic diversity—
but also indirectly, altering species interactions, predation, breeding, and animal 
behaviour (Fahrig, 2003) 

3. Urban heat island effect: the phenomenon whereby urban areas can be up to 12 
degrees Celsius hotter than the adjacent rural areas. While some insects can expand 
their range with warmer temperatures, others area affected by lack of cold areas for 
overwintering, while others still simply cannot survive once they reach their critical 
thermal maximum. 

4. Pollution: light, air and sound pollution abound in urban centres, but artificial light, 
particularly at night, poses the biggest threat to insects. Artificial light at night 
(ALAN) can severely impact on wide-ranging biological processes—from feeding to 
growth to reproduction—all of which are dependent on natural light cycles (Gaston 
and Miguel, 2022).  

5. Exotic plant species: urban gardens are home to a wide range of exotic and invasive 
flora, which tend to sustain lower levels of abundance and diversity of species when 
compared with native plant varieties. Invasive plants can alter ecological processes 
and ecosystems and influence the survival and productivity of their native 
counterparts (Shabani et al., 2020). 

This study and others like it focus on drivers linked to humans, highlighting their centrality in 
biodiversity’s decline. Though this is a new focus for biodiversity studies, it is an increasingly 
significant one, especially as the field of urban ecology expands. 
 
2.6 Cities as unique habitats 

Though human expansion is often connected with declines in biodiversity, human-
dominated urban landscapes can create unique habitats not found anywhere else, creating 
environments in which to examine the impacts of humans on nature (Niemelä, 1999a). 
Some cities serve as a refuge to certain species due to their unique features and habitat 
gradient (Lepczyk, Aronson and La Sorte, 2023), these ‘novel ecosystems’ forming out of a 
wide range of selection pressures and different levels of management and economic input 
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throughout a city (Lepczyk et al., 2017). Cities can even act as key conservation areas for 
certain species, like the Lima leaf-toed gecko, which is critically endangered and whose last 
remaining population is found within habitat patches in Lima, Peru (Lepczyk, Aronson and La 
Sorte, 2023). They and other species may find refuge within city limits due to factors 
including: increased resources like food and water, as well as less competition for them, 
freedom from predators and human overexploitation, increased growing seasons and higher 
temperatures, reduced chemical inputs compared to agricultural land, and higher prey 
abundance (Lepczyk, Aronson and La Sorte, 2023). For these same reasons, cities may be 
appropriate places to reintroduce threatened species, as was the case with the kaku, a 
forest-dependent parrot that was reintroduced to Wellington, NZ (Lepczyk, Aronson and La 
Sorte, 2023). 

Though undoubtedly part of what makes urban areas so unique, the multiple ‘land 
managers’ of urban green space—in the form of parks staff, volunteers and home 
gardeners—are also what makes habitat management extremely complicated, as 
stakeholders act independently and rarely coordinate their efforts across the wider 
cityscape (Cooper et al., 2024). From gardens to parks to nature reserves, the different 
scales at which urbanisation and habitat features influence different species must be 
considered, with a multi-scale, spatially-explicit perspective (Lepczyk et al., 2017). For 
example, connective corridors are more effective than ‘stepping stones’ for helping species 
disperse, but even small habitat patches throughout a city can connect highly mobile 
species like butterflies (Lepczyk et al., 2017). Aronson notes that the wider urban matrix 
must be considered in order to connect disparate habitat patches, and suggests the city-
wide management of parks as a solution to the patchy nature of urban habitat (Aronson et 
al., 2017). In cities where councils, charities, businesses and individuals all manage different 
types of green spaces, reflecting different human priorities, this kind of shift could radically 
alter how wildlife moves around their urban home. 

In addition to the importance of the city-wide matrix, the landscape outside a city 
can be crucial in determining how biodiversity responds to the city itself. In her 2021 paper, 
Spotswood and her colleagues challenged the notion of cities as ‘biological deserts’, and 
explored what it might mean for cities to actually increase the genetic diversity in a region 
and foster populations that may be better able to tolerate threats like climate change 
(Spotswood et al., 2021). Spotswood et al. offer five pathways through which cities can 
benefit regional ecosystems, by: releasing species from pressures of the surrounding 
landscape, increasing regional habitat heterogeneity, acting as stopover sites or stepping 
stones during migration, contributing to species’ genetic diversity and adaptability, and 
enabling engagement with humans, which in turn encourages stewardship and better 
habitat management. These factors, however, are more or less important depending on 
what land use surrounds the urban area. If an urban area is surrounded by agricultural land 
or plantations, then a city can provide species relief from high chemical use, offer more 
heterogenous habitat, and introduce them to more genetic diversity. If an urban area is 
surrounded by wild land, then cities can offer higher levels of inter-species interactions and 
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an abundance of prey (Spotswood et al., 2021). These studies are critical in illustrating that, 
though urbanisation decreases biodiversity on average, there are a multitude of factors that 
determine how species respond to human pressures. 
 
2.7 Brownfield biodiversity 

In a city like London, the value of ‘wasteland’ is slowly being accepted, and it’s now 
common to see roadside verges, gardens and park borders filled with long grasses and 
wildflowers. This practice of encouraging green space to ‘go wild’, which has also been 
termed ‘benign neglect’, is a management approach geared towards species and habitat 
richness (Niemelä, 1999a). Yet there is still pushback on the messy aesthetics of wildlife-
friendly spaces (Lampinen et al., 2021), clashing as it does with the English sensibility of 
‘neat and tidy’.  

These tensions are elucidated in the arena of brownfield conservation, which brings 
into harsh relief the conflict between the scientific and social goals of wildlife conservation 
(Harrison and Davies, 2002). The term ‘brownfield’ refers to land that has been 
abandoned—for days, months or years—for one reason or other, after previously being 
developed or serving as a site of industrial activity (Lorimer, 2008). The land may be 
completely abandoned, closed off by a fence, or it may have been adopted by the 
community as a makeshift park, but the low levels of human input and nutrient-poor soil 
create unique habitats for diverse ecological assemblages. In Bonthoux et al’s review of the 
existing literature around wasteland biodiversity, they found that wastelands can foster 
higher diversity of species than other urban green spaces, and the highest diversity of 
flowers in some regions (Bonthoux et al., 2014).  

Many sectors of the population still might judge brownfield sites as having low social 
or amenity value, but we’ve come a long way since they were portrayed as ‘wasting assets’ 
by the UK’s Urban Task Force in 1999 (‘Towards an Urban Renaissance’, 1999). Brownfield 
sites are recognised by wildlife conservation charities as important habitats for a wide range 
of rare species, where biodiversity can reach some of the highest levels in urban areas 
(Buglife, The Wildlife Trusts, and others). However, their location in the city centre or near 
old docklands makes them appealing sites to clean up and create parks, or often makes 
them targets of heavy development pressure (Lorimer, 2008). Some data suggests that the 
majority of new development in the UK is occurring on brownfield sites (Dixon, 2007), and 
while there are benefits to redeveloping ex-industrial sites, including easing development 
pressures elsewhere and preventing urban sprawl (Couch and Dennemann, 2000), 
brownfield represents habitat in its own right, and that must be taken into account when 
assessing their suitability for development.  

A deeper appreciation of the value of brownfield sites for conservation could greatly 
benefit wildlife in cities like London, and all around the UK. In a country deemed ‘one of the 
most nature-depleted countries on Earth’ (State of Nature, 2023), brownfield sites are as 
close as we might get to near-natural or wild spaces in the expanding urban landscape. 
Fields of shorn green grass might be aesthetically pleasing, but they are often devoid of life 
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and absent the dramatic seasonal changes that might occur in a more natural landscape 
(Harrison and Davies, 2002). Brownfield sites might be yellow and purple and pink—or more 
often than not, merely brown—but they support far more life than the ‘green deserts’ of 
some urban parks and gardens (Harrison and Davies, 2002). Brownfield can even have a 
positive impact on wildlife in nearby areas. In a paper by Angold and colleagues in 2005, 
they found that proximity to the nearest ‘derelict’ site was one of the most influential 
characteristics for increasing species richness, and that when these sites are closer to other 
similar sites, they had more distinctive flora than when they were isolated (Angold et al., 
2006).  
 
2.8 Urban planning implica\ons 
 Urban ecology naturally and inevitably has a societal component, as any kind of 
intervenLon or conservaLon acLon will affect the people for whom the city is also habitat. It 
is for this reason that urban ecology research lends itself to urban planning (Niemelä, 
1999a). However, this collaboraLon assumes the appropriate knowledge on both sides, an 
interest to communicate and share across disciplines, and the will to implement the 
recommendaLons. One of the key ways that ecological research can play a role in urban 
development is through the provision of green infrastructure (GI). GI can be understood as 
the integraLon of nature into the built environment—tradiLonally ‘grey’ infrastructure—
through a range of features like green roofs, green walls, and sustainable drainage systems 
(Filazzola, Shrestha and MacIvor, 2019). As well as possibly providing habitat or a green 
corridor for more mobile species, green infrastructure helps alleviate some of the pressures 
of urbanisaLon and climate change, providing permeable surfaces, improving air quality and 
reducing the urban heat island effect (Ying et al., 2022). SinneK states that ‘green 
infrastructure is the primary way that biodiversity is protected and enhanced in the built 
environment’ (SinneK, 2015, p.198), and though GI should not be viewed as a replacement 
for natural systems and habitats (Filazzola, Shrestha and MacIvor, 2019), high-quality green 
infrastructure can benefit people, wildlife, and the built environment itself.  

There exists a strong case for green infrastructure to foster urban biodiversity, as well 
as statutory guidance at various levels of governance in the UK, but to date there are few 
examples of quality green infrastructure in new developments (Jerome et al. 2019). This may 
be because there are mulLple goals for green infrastructure, and culLvaLng biodiversity is 
rarely the main priority (Filazzola, Shrestha and MacIvor, 2019). In their green infrastructure 
literature review from 2019, Filazolla et al. found that 91% of green infrastructure projects 
were focussed on providing ecosystem services, human well-being, or aestheLc value. 
Evidence of green infrastructure having a significant posiLve impact on biodiversity in 
heavily urbanised areas is limited (Murkin et al., 2023), but as are the projects which 
explicitly prioriLse wildlife. Going forward, biodiversity must be the central priority for green 
space planning, provision and management (SinneK, 2015).  
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Jerome and their colleagues present a framework for assessing the quality of green 
infrastructure, and outline three essenLal principles for conserving nature through GI 
(Jerome et al., 2019): 

1) GI should convey lasLng ecological improvement so the built environment can 
play a role in reversing declines in biodiversity. 

2) GI should help create, restore and enhance habitats and the linkages between 
them. 

3) GI should support populaLons of key species, as idenLfied in local biodiversity 
plans and targets. 

Since we know that biodiverse spaces improve people’s health (Fuller et al., 2007), 
prioriLsing biodiversity during the provision of green infrastructure should also lead to GI 
that enhances human wellbeing. Underpinned by ecological theory, Hostetler et al lean on 
systems-thinking to advocate for coordinated, landscape-level management of green 
infrastructure, informed by the greater ecosystem and socio-ecological processes that 
govern it (Hostetler, Allen and Meurk, 2011). Hostetler says this would require a city-wide 
understanding of biodiversity, and an aligned philosophy for its management. This may be a 
lozy goal, but it is perhaps necessary if we are to overcome the chasm that exists between 
policy and pracLce (Roe and Mell, 2013).  
 
 
3 | MATERIALS AND METHODS 

 
In this study, I examined the influence of urbanisation on biodiversity, exploring both 

species richness and total species abundance. Drawing on the paper by Fenoglio et al 
(2021), I looked at the impact of some key drivers of urbanisation on insect biodiversity, 
namely light pollution and impervious surface area. In the global study, I also analysed the 
urban heat island effect, and in the London study, ‘green cover’ data served as a proxy for 
habitat fragmentation. The study employed R (‘R Core Team’, 2024) for all data 
preprocessing, data manipulation and statistical analysis, and apects of the process were 
aided by the use of an AI language model (‘Claude 3.5 Sonnet’, 2024). 
  
3.1 | Global 
3.1.1 Global biodiversity data: The PREDICTS database 

The PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial 
Systems) database collates 3.2 million records dating back to 1970, sampled at over 26,000 
sites around the world and representing over 47,000 species (Hudson et al., 2017). The data 
represents a broad range of taxa and species, covering all major plant, fungal and terrestrial 
animal groups, and has wide-ranging geographical reach. These records are classified into 
one of nine land use types: primary vegetation, secondary vegetation (mature, 
intermediate, young, unknown age), plantation forest, pasture, cropland, or urban (Hudson 
et al., 2014). The data comprises species abundance, presence/absence, and species 
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richness measures as proxies for biodiversity. PREDICTS provides a wide range of high-
quality biodiversity data from sites representing varying levels of human disturbance across 
many different taxa and regions. This presents the opportunity to model changes in 
biodiversity due to human pressure on a global level, but at local scales. (Lorimer, 2008) 

From the full dataset, which combines PREDICTS releases 1 and 2 (Hudson et al., 
2023), I subset the dataset to only the class Insecta, which reduced the number of 
observations to 1,037,499. Each observation has spatial information attached to it, allowing 
the data to be aggregated and reorganised to site-level metrics, creating a row for each site 
and summarising how many species and individuals have been recorded at each unique site. 
The site-level biodiversity metrics of interest were within-sample species richness and total 
species abundance. Species richness was calculated as the number of unique taxa found at a 
given site, using a standardised sampling unit known as species density, and total 
abundance was calculated as the sum of the measures of abundance of all taxa at each site 
(Newbold et al., 2015). When sampling effort varied within a study, it was corrected by 
rescaling the sampling efforts of each study, assigning the most-sampled site a value of 1, 
and then dividing the raw abundance measurements by the relative sampling effort 
(Newbold et al., 2015). This step was completed before reorganising the data by site.  

After cleaning and reorganising the data, 8,242 insect sites remained. Figure 1 shows 
the distribution of insect sites around the world. Though sites are spread across continents, 
there is a clear bias towards Europe, with significant studies also in Latin America. Africa is 
underrepresented, and there are very few sites in central Asia. 

 

 
FIGURE 1: Global distribution of insect sample sites, with the size of the green dot 
representing the number of studies at each site. 
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 Though there is a predominant land use category classified as ‘urban’ in the 
PREDICTS data, all land use types were included in the analysis. This allowed for a richer 
investigation of the drivers of urbanisation, rather than solely of pre-defined urban areas. It 
also allowed for analysis of potential interactions between land use and urbanisation 
variables, and to assess in which environments urbanisation might impact insect biodiversity 
to a greater or lesser degree. The external urbanisation data sets utilised for the global 
analysis were artificial light at night, impervious surface area, and urban heat island effect. 
The PREDICTS data spans more than 50 years, so to ground the data temporally, the sample 
midpoint was calculated for each site. Both the mean and the median sample midpoint for 
all sites reporting on insect biodiversity was 2005, so where possible, urbanisation data from 
2005 was used to compare data of similar temporal resolutions.  
 Total abundance and species richness were analysed separately, and these metrics 
were broken out into separate data sets, as some of the insect sites did not have measures 
of abundance. The final data sets included 8,242 observations of insect species richness and 
7,716 observations of total insect abundance. Before joining external datasets to the 
PREDICTS data, insect site locations were extracted as latitude/longitude coordinates and 
converted to spatial points using the terra package in R (Hijmans et al., 2024). 
 
3.1.2 Landscape-level data: Artificial light at night 
 The data used to study the impact of artificial light at night (ALAN) on global insect 
biodiversity is from Li and Zhou (2017) and was downloaded from Figshare 
(figshare.com/dataset/nighttime_light). It is a calibrated time series from 1992-2021 of 
nighttime light data obtained from the National Oceanic and Atmospheric Administration 
(NOAA) (ngdc.noaa.gov/). The raw data has been used in countless studies investigating the 
impact of artificial light, including social, economic and environmental research—specifically 
for studies looking at urbanisation and electricity use—but the lack of systematic calibration 
for the data had made it difficult to apply across temporal and spatial resolutions (Li and 
Zhou, 2017). 

In their 2017 paper, Li and Zhou explain their approach to improving the consistency 
of ALAN time series data derived across different time periods or different satellites, to 
produce a globally calibrated and long-term time series (Li and Zhou, 2017). Their stepwise 
calibration scheme accounts for over- and under-estimation of the satellites used in the 
initial data collection and captures annual cloud-free observations of light measured from 
cities, towns and other areas suffering from continuous nighttime light (Li and Zhou, 2017). 
The full range of possible nighttime light values are digital numbers from 0 to 63, and have a 
spatial resolution of 30 arc seconds, or 1 kilometer, with a coverage of -180 to 180 degrees 
in longitude, and -65 to 65 degrees in latitude.  

The data was available in GeoTIFF file formats for each year from 1992 to 2021. The 
2005 data was used for this study, and the GeoTIFF was read into R as a spatial raster, 
whose values ranged from 0 to 61. Spatial data points were extracted from the ALAN raster 
using the terra package in R (Hijmans et al., 2024) and matched to the insect sites. The 

https://figshare.com/articles/dataset/Harmonization_of_DMSP_and_VIIRS_nighttime_light_data_from_1992-2018_at_the_global_scale/9828827/7
https://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html
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PREDICTS insect sites covered the full range of ALAN values, implying a diverse geography of 
sites that represent a broad range of potential impacts from this urbanisation metric. Figure 
2 illustrates the range of artificial light at night across the globe, with varying intensities 
displayed using a colour gradient from dark grey, representing no artificial light, through to 
yellow and white, indicating heavy light pollution. 

 

 
FIGURE 2: Global distribution of artificial light at night. 
 
3.1.3 Landscape-level data: Impervious surface area 
 The ‘built’ layer from the Global Human Settlement Layer (GHSL) project can be 
downloaded from the GHSL website (human-settlement.emergency.copernicus.eu). This 
project produces spatial data and analytics on a global level to help better understand the 
impact of human presence on the planet (European Commission. Joint Research Centre., 
2023). The GHS-BUILT-S spatial raster dataset, used in this study as a proxy for impervious 
surface area (ISA), is a representation of the estimated distribution of built-up surfaces 
around the world, in five-year intervals from 1975-2030. The data was created through a 
spatial-temporal interpolation of a collection of multi-sensor satellite imageries from 
Landsat and Sentinel-2. Built-up surface, which will represent impervious surface area, is 
defined as the ‘gross surface (including the thickness of the walls) bounded by the building 
wall perimeter with a spatial generalization matching the 1:10k topographic map 
specifications’ (European Commission. Joint Research Centre., 2023). 

The data was available as individual shapefile tiles at 3- or 30-arc seconds, or as a 
GeoTIFF for global coverage, at 30-arc seconds/1 kilometer. For the global study, a full 
download of the worldwide GeoTIFF at 1 kilometer for the year 2005 was used. Data was 
uploaded to R as a raster and values were extracted and matched to insect sites using the 
terra package (Hijmans et al., 2024). The built-up values are expressed as 32-bit integers, 
with possible minimum and maximum values ranging from 0-1,000,000, for the total built-
up surface area in square meters that falls within each 1 square kilometer grid cell. Though 
the maximum value of the raw GHSL data for the year 2005 is 926,652 meters, the 
distribution of values is heavily skewed towards zero, with a value of 607 meters occupying 
the 90th percentile of the dataset. As urban areas only make up 2% of the world’s land 

https://human-settlement.emergency.copernicus.eu/download.php
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cover, this data accurately represents the predominantly non-built-up state of the world. 
The range of built-up values matching the PREDICTS insect sites ranges from 0-455,923 
square meters. In any 1 square kilometer area around an insect sites, less than 50% of the 
area is considered built-up, as defined by this dataset. Figure 3 shows the full built-up cover 
data set for the year 2005. The condensed areas of built-up cover are signified by colours 
reaching towards orange and red. 

 

 
FIGURE 3: Global Human Settlement Layer - Built-Up Cover. This image was projected using 
the original CRS of the GHSL raster, which at 1km is the Mollweide pseudocylindric 
projection. 
 
3.1.4 Landscape-level data: Urban heat island effect 
 Urban heat island (UHI) data is from the Yale Center for Earth Observation (YCEO) 
and can be downloaded from Nasa’s Socioeconomic Data and Applications Center (SEDAC – 
sedac.ciesin.columbia.edu). The most recent version combines urban extent data from 
Natural Earth (https://www.naturalearthdata.com/), land cover data from the European 
Space Agency Climate Change Initiative (ESA CCI), and Land Surface Temperature estimated 
from the Moderate Resolution Imaging Spectroadiometer (MODIS), from Nasa’s Terra and 
Aqua satellites (Chakraborty and Lee, 2023). The full data set comprises annual Surface 
Urban Heat Island (SUHI) intensities averaged across the years 2003-2018, for both daytime 
and nighttime, for more than 10,000 global urban extents. The data was uploaded as a 
gridded raster, but only pixels for the 10,000 urban clusters are connected to UHI values, so 
the data was not continuous. This is because it was necessary for the authors to designate 
‘urban’ and ‘rural’ references, which they only did around the urban clusters (Chakraborty 
and Lee, 2023). The raw UHI data has both positive and negative values, with negative 
values indicating that there are some urban areas that are colder than the surrounding are. 
This could be due to various factors, such as bodies of water or urban parks with significant 
vegetation. However, the mean and median values of the UHI data are both positive, 
signifying that urban areas tend to follow the hypothesis of being warmer than their rural 

https://sedac.ciesin.columbia.edu/data/set/sdei-yceo-sfc-uhi-v4/data-download
https://www.naturalearthdata.com/
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surroundings. The range for the daytime UHI is greater than the nighttime range, with a 
minimum value of -3.75 degrees C and a maximum value of 2.86 degrees C. However, the 
data indicates that the effect of nighttime UHI is more intense, signified by a higher 
maximum temperature difference of +2.98 degrees C, and a warmer lower reach of -1.3 
degrees C.  

There were a significant number of NA values in the raw UHI data, which is explained 
by a few factors: either there is not an urban or rural pixel for a certain area as detected by 
the ESA CCI land cover product, the pixel is not useable, or there is a limitation of the urban 
extent data used in the algorithm (Chakraborty and Lee, 2023). These limitations are 
significant, and in joining the data, only 5% of the global insect sites were able to be 
matched to UHI values, with the results excluding all of the sites in Africa, Australia, central 
America and Canada, as well as much of Asia. Due to this substantial gap in the data, the 
UHI variable was removed from the analysis. Figure 4 illustrates the distribution of useable 
UHI pixels against insect sites, of which only 473 were matched. 

 

 
FIGURE 4: Distribution of UHI data after matching to PREDICTS insect sites. 
 
3.1.5 Statistical modelling 
 All statistical analyses were conducted using R version 4 (‘R Core Team’, 2024). The 
abundance and richness response variables were modelled separately, each with a 
generalised linear mixed effects model. The urbanisation variables were scaled to their 
centre points so the values were standardised, and the primary land use categories were 
converted to factors with 6 levels: primary vegetation, secondary vegetation, plantation, 
pasture, cropland and urban. Land use, impervious surface area and artificial light at night 
variables were inputted into the model as fixed effects. Added to both studies was a random 
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effect of spatial block, to account for the spatial arrangement of each site, as well as study 
identity, to account for differences in overall abundance and richness between regions and 
different methods of sampling (Newbold et al., 2015). In the richness model only, site 
identity was added to the random structure, in the case of overdispersion (Newbold et al., 
2015). Before running the model, total abundance was log-transformed to correct for 
skewness and to better fit the model. The abundance GLM model was fitted with a Gaussian 
distribution, and the species richness model used a Poisson fit. 
 Two sets of models were run—one without any interactions between the variables, 
and one with an interaction between both land use and impervious surface area, and land 
use and artificial light at night. An interaction model was initially chosen under the 
hypothesis that the impact of urbanisation metrics on insect biodiversity might be more or 
less influential based on the land use type. This is in keeping with studies that show the 
importance of landscape-level and other contextual factors in determining the response of 
certain species to human pressures (Angold et al., 2006; Spotswood et al., 2021). However, 
this model was abandoned after performing backwards stepwise selection of the fixed 
variables. Firstly, there were many warning signs indicating rank deficiency due to 
insufficient observations per factor level to estimate every model term. This was confirmed 
when plotting the interaction model, which showed that many of the land types dropped off 
as urbanisation variable values increased. 

Further, there was high multicollinearity between the variables in the interaction 
model, which was tested using the ‘vif’ function from the car package in R (Fox et al., 2023). 
No variables were retained after the backwards stepwise selection processes, so this model 
was not deemed a good fit to represent the relationship between urbanisation and insect 
biodiversity. This was true for both total abundance and species richness. 
 Backwards stepwise selection was then performed on the non-interaction model, 
where land use, impervious surface area and artificial light at night were all inputted to the 
model with a purely additive relationship. The function ran without any warnings and 
returned the final model, whose only variable was land use, indicating that the addition of 
ISA and ALAN did not improve the model fit. In checking the assumptions of the model, it 
was found that both the ALAN and ISA variables demonstrated some non-linearity, as well 
as heteroscedasticity. To address this, polynomial terms were added for these two variables, 
and the species richness model was fitted with a negative-binomial distribution instead. 
However, these did not improve the fit of the model, so the original GLM model was used 
for simplicity. 

The GLMER function was used for all models, which is part of the StatisticalModels 
package (version 0.1, Tim Newbold), which is dependent on lme4 (Bates et al., 2024). The 
final models are presented in Appendix A. 
   
3.2 | London  
3.2.1 London biodiversity data: Butterflies for the New Millennium  
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Butterflies for the New Millennium (BNM) is a butterfly database created and co-
managed by the charity Butterfly Conservation, and all data was provided courtesy of 
Butterfly Conservation. BNM is the most comprehensive source of verified butterfly records 
across the United Kingdom, with inputs dating back to 1917 and comprising observations 
from the following national surveys: Butterfly Transects, Wider Countryside Butterfly 
Survey, National Moth Recording Scheme, Big Butterfly Count, iRecord Butterflies, and the 
namesake of the database, Butterflies for the New Millennium (Bu@erfly ConservaCon, 
2024). BNM contains observations of every species of butterfly found in the UK, including 
specialist species most likely to be impacted by urbanisation and environmental changes. 
Though BNM contains some data from transect surveys, for the most part it is unstructured, 
presence-only data. Therefore, for this portion of the study, only species richness was 
analysed, as absence records are required to infer abundance.  

The data set I started with was already limited to the Greater London area, so no 
geographical subsetting was required. Though the data contained observations from as 
early as 1917, all entries before 2010 were removed so that analysis could be performed on 
more relevant observations gathered through consistent and contemporary means, such as 
apps like iRecord. This updated data set would also be more reflective of the current state of 
biodiversity in London. The sample midpoint for each site was calculated as the mean value 
from the earliest and latest sample year recorded for each site. Both the median and mean 
sample midpoint across all sites is 2017, showing a slight skew towards more recent years 
across the 10-year time span. The full data set had 543,276 observations, which decreased 
to 315,714 when subsetting to just 2010 onward. 44 unique butterfly species were observed 
in Greater London between 2010 and 2021. During this time, the ten most frequently 
recorded species were, in descending order, the Meadow Brown, Gatekeeper, Small White, 
Large White, Speckled Wood, Ringlet, Common Blue, Marbled White, Green-veined White, 
and the Holly Blue. These butterflies are illustrated in that order, starting from the left for 
both the top and bottom rows, in Figure 5. These figures were calculated by summing the 
total number of observations of each species recorded in each survey over time. 

 

 
Figure 5. The 10 butterflies recorded in the BNM data most frequently from 2010-2020 
across all sites in Greater London. This may not be reflective of the actual abundance of 
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these species, as the records are presence-only, and are likely to be skewed by surveyors’ 
ability to identify certain species, how often each site was surveyed, as well as dynamics at 
each individual survey site. Image credit for all butterflies: Butterfly Conservation. 
 

Site-level metrics were created by reorganising the data by geographic location. As 
the BNM data is comprised of multiple different surveys, the spatial resolution was 
inconsistent across entries, with resolutions ranging from 1 to 100 meters. To work across a 
consistent data set, all entries were aggregated to 100-meter grid cells, using the 6-digit 
Ordnance Survey (OS) National Grid reference. There were 32,372 such ‘sites’. Site-level 
species richness was calculated by aggregating the number of unique species present within 
each 100-meter grid. Plotting the survey sites onto a map revealed that the geographic 
extent of the BNM data fell well outside the extent of Greater London, stretching 
significantly further to the south. To prevent the occurrence of NA values when matching 
the butterfly sites to London urbanisation data, and to restrict the study to only the area of 
Greater London, the BNM data was cut to match London’s specific coordinates. This more 
precise data, organised by 100-meter grid references, yielded 19,454 sites. Figure 6 shows 
the distribution of butterfly survey sites in Greater London, aggregated to 1 kilometer for 
less cluttered plotting. 
 

 
FIGURE 6: A map of Greater London with butterfly survey sites from BNM, at 1km spatial 
resolution. The colour of the dot represents species richness, with purple signifying sites 
with lower species richness, and orange and yellow signifying sites with higher species 
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richness. The size of the dot represents the number of studies conducted at each site over 
the 10-year period of the data. 
 
3.2.2 Landscape-level data: Artificial light at night 

The data used for artificial light at night (ALAN) came from Land Use Consultants 
(LUC, landuse.co.uk) and was commissioned by the Campaign to Protect Rural England 
(CPRE) in 2015, building upon CPRE’s Night Blight! campaign from 2003, as well as other 
previous work to illustrate the extent of light pollution across the country. This data was 
generated from the Visible Infrared Imaging Radiometer Suite (VIIRS), which gathers 
information about the amount of light being emitted from earth, taking a picture of the 
same location every night at 1:30am (England’s Light PolluCon and Dark Skies, 2016). The 
VIIRS data is an improvement on the US Defense Meteorological Satellite Program (DMSP), 
which was used for the CPRE studies in 1993 and 2003. The aim of the LUC study was to 
produce nation-wide light pollution maps to illustrate the extent of ALAN and serve as a 
baseline against which to observe change over time. The LUC dataset was considered 
preferable to the one used for the global study because the resolution is more appropriate 
(400 meters) and is specific only to the UK. 

The baseline data from which to create the national map comes from September 
2015, which was deemed the best month from that time period due to limited cloud cover 
(England’s Light PolluCon and Dark Skies, 2016). The specific data used for this study is from 
the year 2016. Data has been rescaled from the satellite’s resolution of a 742 x 742 meter-
squared cell to a 400 square meter pixel across the UK. As this is a coarser resolution than 
the butterfly data, one light pollution value was assigned to all butterfly sites within the 
same 400-meter cell using the ‘nearest neighbour’ method. Joining the data resulted in 141 
unmatched values, which were assigned the value of the next nearest point. The data 
comprises 9 colour bands, each representing a range of brightness values², with lower 
values indicating lower levels of light pollution and darker skies, and higher values indicating 
higher levels of light pollution and brighter skies. The lowest colour band comprises any 
value under .25, and the highest colour band comprises any value over 32. The full data set, 
which covers all of the United Kingdom, has values ranging from -.286 to 1,556.83, with this 
extremely high value coming from the Grangemouth Refinery in Scotland, suggesting a gas 
flare. Figure 7 shows the percent of land that falls within each colour band across England, 
Wales and Scotland. As the chart shows, England has significantly brighter nighttime skies 
than Wales or Scotland. 

 
 
 
 
 
 
 

https://www.landuse.co.uk/
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FIGURE 7: Percent share of land by country in each brightness colour band. Image source: 
Land Use Consultants (England’s Light PolluCon and Dark Skies, 2016). 
  

ALAN values were extracted from the raster using the terra package in R (Hijmans et 
al., 2024) and matched to the butterfly sites. The range of light pollution values against the 
butterfly site data is 0.87 to 571.54, suggesting a range of sites with vastly different levels of 
light pollution, as well those with some of the worst light pollution in the country. Figure 8 
shows the distribution and intensity of light pollution across all of Great Britain. To create 
this map, ALAN values were capped at 98% to remove outliers for more seamless plotting of 
the UK’s bright night sky.  
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FIGURE 8: A map of Great Britain showing the areas with the most intense nighttime light 
pollution. 
 
3.2.3 Landscape-level data: Impervious surface area 

Impervious surface area data for the London study came from the Global Human 
Settlement Layer Project (GHSLP), which is the same source that was used for the global 
study (European Commission. Joint Research Centre., 2023). To match the temporal and 
spatial resolution of the butterfly data, built-up cover data for the year 2015 was 
downloaded, at 3-arc second—or 90 meter squared—resolution. The unit of measurement 
for the data set is meters, representing the number of meters within each 90-meter grid 
square that comprises built-up cover. At this scale, the total possible range of values is 0-
8,100 meters. To cover the entire Greater London extent, two adjacent grid tiles (C18 and 
C19) were downloaded. These two gridded rasters were merged into one file, with a range 
of values from 0 to 5,629 meters. Figure 7 shows the distribution and intensity of built-up 
surface area throughout greater London at a 90 meter resolution, transformed into the 
percentage of each 90 meter grid square that is built up, defined as the ‘gross surface 



 35 

(including the thickness of the walls) bounded by the building wall perimeter’ (European 
Commission. Joint Research Centre., 2023). 

 

 
FIGURE 9: The percent of built-up surface area throughout Greater London, with lighter, 
brighter colours indicating a higher percentage of the area that is built up. 
 

Spatial data points were extracted from the raster using the terra package in R 
(Hijmans et al., 2024) and matched to the butterfly sites. The range of built-up surface area 
against the London butterfly sites is 0-5,110 meters, indicating a diversity of survey sites, 
including some in very built-up areas. In terms of percentages, the range of built-up cover in 
each 90-meter grid square is 0-63%. To explore the impact that different spatial resolutions 
can have on data analysis, the 1 kilometer grid square data was also matched to the 
butterfly sites for comparison. At this coarser resolution, the built-up surface percent 
changes significantly at the upper limits: for each 1 kilometer grid square, the range of built-
up cover only ranges from 0-26% (0 to 259,283 meters of each km²), highlighting the 
importance of scale when assessing environmental features, and recognising the diversity of 
urban landscapes. The 90 meter resolution was selected over the coarser spatial data for 
analysis, in order to more accurately capture the gradient of this urbanisation metric across 
London.  

 
3.2.4 Landscape-level data: Green cover 
 Green cover data by the Greater London Authority (GLA) was downloaded from 
London Datastore (data.london.gov.uk) and used as a proxy for habitat fragmentation. The 

https://data.london.gov.uk/dataset/green-cover-2024
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GLA measured green cover using a combination of 4,000 data points manually labelled by 
humans and a machine learning model based on these data points that used infrared 
images, measurements of surface heights, and aerial photographs of London captured on a 
rolling basis between 2020 and 2022. The model used a Random Forest algorithm to classify 
pixels, which were given one of three categories: ‘canopy’ (individual trees or trees in a 
wooded area), ‘green’ (including private gardens, road verges and green roofs, and other 
vegetation that is not tree canopy), and ‘neither’ (everything else: roads, buildings, water, 
etc). The GLA model had trouble classifying ‘bare grass’ without much vegetation, but it 
correctly labelled areas as ‘green’ about 91% of the time (GLA Methodology Report, 2024). 
 The detailed GLA green cover map is not downloadable in a spatial format to use in 
analysis, but they extracted the green cover values for each of London’s 679 wards, as of 
2022. The resulting data set, which is available at London Datastore (data.london.gov.uk), is 
an excel spreadsheet of London wards with a corresponding value representing the percent 
of each ward that has been classified as ‘green’. To match these values to butterfly survey 
sites, I uploaded London’s ward boundaries into R from ArcGIS and performed a spatial join 
to the butterfly data using the sf package in R (Pebesma et al., 2024). The green cover 
percentage associated with each ward was then matched to the ward surrounding each site. 
Though the actual classification of electoral ward is not significant for this study, it presents 
a way to assess the spread of green cover across the capital. Wards differ greatly in size 
across the capital, but as they are all significantly larger than the 100m resolution of the 
butterfly data, every site that fell within the same ward adopted the same percent value for 
green cover. This could lead to some of the biodiversity indicators being skewed or masked 
by the value of the surrounding area, but it might also allow for analysis regarding the 
influence of landscape-level (in this case, ward-level) factors on local variables.  

Of the 679 London wards, 638 contained butterfly survey sites. In the full data set, 
green cover percent values range from about 1%—for wards that fall within the City of 
London, like Langbourn, Aldgate and Cornhill—all the way up to 94% for the ward of Darwin, 
in the Sevenoaks District. The average green cover across all London wards is 38%. Figure 8 
shows the Green Cover Map created by the GLA in 2024. 

 

https://data.london.gov.uk/dataset/green-cover-2024
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FIGURE 10: The 2024 Green Cover Map of London, produced by the Greater London 
Authority. Image credit: Greater London Authority (data.london.gov.uk) 
 
3.2.5 Landscape-level data: Land cover 

There are a variety of land covers blanketing the nation’s capital, which can be 
mapped using raster data from the UK Centre for Ecology and Hydrology’s Land Cover Map 
2015 (ceh.ac.uk). Land Cover Map 2015 (LCM2015) was created by classifying satellite data 
into 21 classes, which are more granular versions of the UK Biodiversity Action Plan Broad 
Habitats, e.g. the ‘built-up areas and gardens’ category was split into two target LCM2015 
classes: urban and suburban (Land Cover Map 2015, 2017). These classes signify land cover, 
rather than land use, as use could not be implied from the surface cover of the ground. The 
spatial resolution of LCM2015 is 25 meters, so to match the resolution of the Butterfly 
Conservation data, each 25-meter land parcel was aggregated to 100 meters and assigned 
the majority land cover across the 4 grid squares. Figure 9 shows the raw land cover data 
across London’s entire bounding box, a 5 kilometer buffer added around the map’s edges 
for easier viewing. 
 

https://catalogue.ceh.ac.uk/documents/bb15e200-9349-403c-bda9-b430093807c7
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FIGURE 11: Predominant land cover for the entire greater London extent at 100 meter 
resolution. 

 
Land cover values were extracted from the raster file using the terra package in R 

(Hijmans et al., 2024), and then aggregated to 100 meters to be matched to the butterfly 
data. 94% of the sites fell within the categories of urban, suburban, improved grassland and 
broadleaf woodland, with a few percent each for freshwater and arable land cover. To 
simplify the data, just these six land covers were used, with the remaining 15 classifications 
aggregated and categorised as ‘other’. These were then saved as factors, so they could be 
plotted accordingly during analysis. Table 1 lists the land cover categories of the butterfly 
survey sites, along with their corresponding percentage values, and Figure 10 maps the 
butterfly sites across London, coloured by their land cover classification. 

 

 

Table 1: the predominant land 
cover categories of the 
BuKerfly ConservaLon survey 
sites across Greater London. 



 39 

 

 
Figure 12: butterfly survey sites in greater London. The colour of the data point represents 
the predominant land cover category at 100 meters. 
 

Over 50% of the land cover for the butterfly sites is classed as urban or suburban, 
which comprise built-up areas and private gardens. Improved grassland is a significant 
category, and though in more rural areas tends to represent farmland, in cities signifies for 
any grass-covered areas with high levels of management, dominated by few grass species 
and lower levels of biodiversity than natural grassland (NHBS, 2022). In London, examples of 
this could be many of the public parks, sports fields, larger lawns in housing estates, and 
areas in nature reserves that are actively managed for recreation. Pockets of broadleaf 
woodland grow in some of the larger parks, like Epping Forest and Richmond Park, as well as 
areas of the Green Belt, nature reserves, and former estate land. 
 
3.2.6 Statistical modelling 

Statistical analysis was conducted using R version 4 (‘R Core Team’, 2024). The 
relationship between butterfly species richness and urbanisation was modelled using a 
generalised linear mixed effects model, assuming Poisson-distributed errors. The levels of 
the land cover factor were reorganised to broadly represent levels of human disturbance, 
from woodland to urban. The model used the sample midpoint from the site as the random 
effect to correct for the large variation that could occur between years, due to factors like 
sampling effort, number of sites, and environmental fluctuations. Artificial light at night, 
impervious surface area and green cover percent were scaled and centred around zero, and 
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these three variables, along with the predominant land cover factor variable, were fitted as 
fixed effects. Backwards stepwise selection using likelihood ratio tests, or Chi-squared tests 
(χ2), was performed to analyse the impact of each variable on the predictor variable, species 
richness. At the end of the selection process, all variables remained, suggesting that each 
one improved the fit of the model.  

However, in testing the model assumptions, a few key assumptions were violated, 
namely that the green cover and ALAN variables failed a linearity test. Species richness 
appeared to exhibit a linear relationship with ALAN up to a certain point, but then curved 
off, while green cover showed complete non-linearity. The model checks also uncovered 
significant zero-inflation—most likely from the built-up surface area variable, which includes 
many zero values—and heteroscedasticity on the ALAN plot at higher values. Due to these 
issues, the Poisson error distribution was deemed inappropriate, and the data was re-
modelled with a negative binomial distribution, whose variance is a quadratic rather than 
linear function of the mean, and can better handle non-linearity (Ver Hoef and Boveng, 
2007). Polynomial terms were added to both ALAN and green cover, to specifically assess 
the linear vs. quadratic terms. A zero-inflation formula was tested, but in the summary of 
the model, the zero-intercept appeared to have no impact, so was removed. The fit of the 
model was improved with the negative-binomial distribution, as evidenced by the Akaike 
Information Criterion (AIC) test, which assigned a lower AIC value to the new model, which 
signifies a better fit. The ALAN variable still exhibited heteroscedasticity at upper values, but 
this is likely due to the few extreme values in the data set.  

Backwards stepwise selection of the variables was re-run with the updated negative-
binomial model, which retained all variables once again, indicating that all of the fixed terms 
contributed to improving the fit of the model. Because every variable was retained in the 
model selection process, the full and the reduced models were identical, and normal 
likelihood ratio tests couldn’t be performed. Instead, to analyse the significance of each 
predictor variable on the response variable, four additional models were created, each one 
removing one of the variables and allowing for the assessment of each predictor variable on 
its own in relation to the full model. From here, coefficients tables were generated to 
analyse the significance of each variable.  

Both the original linear mixed effects model and the updated negative-binomial 
mixed effects model were from the lme4 package in R (Bates et al., 2024). The final models 
are presented in Appendix B. 

 
3.3 Use of artificial intelligence 
Various aspects of both the global and London study were assisted by the use of an AI 
language model (‘Claude 3.5 Sonnet’, 2024). This assistance involved collaboration for 
generating and troubleshooting code that was used for data cleaning and processing, 
statistical analysis, and data visualisations. All final decisions were made and implemented 
by the researcher. 
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4 | RESULTS 
 
4.1 Global analysis of the impact of urbanisation on insect biodiversity 

Impervious surface area (ISA), artificial light at night (ALAN) and land use were 
analysed for their impact on total insect abundance and insect species richness at the global 
scale. Landscape-level factors—in this case, land use—played a significantly larger role in 
determining insect abundance than either of the urbanisaLon variables used for the 
analysis. While species richness declined in pasture and cropland, no land use other than 
primary vegetaLon was significant in determining total insect abundance at the global level. 
Neither ISA nor ALAN were significant variables in determining changes in global insect 
biodiversity.  

The statistics for the final selected models are presented here. Artificial light at night 
and built-up surface area each had one degree of freedom (DF), and land use had five 
degrees of freedom. The effects of the urbanisation variables on total abundance are: for 
built-up surface area χ2 = 0.336 and p = 0.562, for artificial light at night χ2 = 0.245 and 
p=0.621, and for land use χ2 = 11.256 and p = 0.047. The effects of the urbanisation 
variables on species richness are: for built-up surface area χ2 = 0.320 and p = 0.0572, for 
artificial light at night χ2 = 0.008 and p = 0.929, and for land use χ2 = 33.967 and p < 0.001.  
 To assess the impact of each land use type on insect biodiversity, odds ratios were 
calculated for each biodiversity metric, along with the p-values for each positive or negative 
relationship displayed. Figure 11 shows the plots of the different land use categories and 
their impact on both insect abundance and species richness.  
 

 
FIGURE 13: Changes in log-transformed total abundance (A) and species richness (B) across 
different land use categories, compared to the intercept.  
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The only land use that had an impact of statistical significance (p < 0.05) on insect 
abundance was the intercept, which is primary vegetation. Though plantation, cropland and 
urban land uses often lead to decreases in total abundance for this data set, the results 
were not statistically significant, with urban land displaying huge variance across the results, 
and a small percentage of the plantation sites exhibiting higher levels of abundance than the 
mean value for primary vegetation. For the species richness metric, plantation and cropland 
were associated with statistically significant decreases in species richness, both of about 
14%, with p-values of .001 and .002, respectively. Pasture and urban land exhibited 
marginally positive relationships with species richness, but the results were not significant (p 
= 0.447 and p = 0.969, respectively), and the urban relationship in particular shows great 
uncertainty. Both biodiversity metrics increased in sites of secondary vegetation, though the 
p-values were not significant. 
 
4.2 London: Analysing the impact of key urbanisation metrics on butterfly species richness 

Impervious surface area (ISA), artificial light at night (ALAN), ward-level percent 
green cover, and predominant land cover were all analysed in relation to their impact on 
butterfly species richness across London. Every variable exhibited significant influence over 
changes in butterfly biodiversity for the sample data in the study. The results of the 
likelihood ratio test are as follows: For ALAN, DF = 2, χ2 = 14.634, p = 0.0007; for ISA, DF = 1, 
χ2 = 16.114, p = 5.964*e^-5; for percent green cover, DF = 2, χ2 = 38.074, p = 5.388*e^-9; 
for land cover, DF = 6, χ2 = 362.66, p <2.2*e^-16. Full coefficients tables are presented in 
the appendix. 

Figure 12 shows the relationship between butterfly species richness in London and 
the four predictor variables representing urbanisation. 
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FIGURE 14. Impacts of urbanisation on butterfly species richness 
A-C : Response of species richness to increasing values of each urbanisation variable. The 
values on the x-axis are the scaled values from the model. 
D: Difference in species richness within different land covers, compared to the intercept. 
 

Each of the 6 land covers led to lower levels of butterfly species richness than the 
reference land cover woodland, with every decrease associated with statistically significant 
p-values < 0.001. While built-up surface area exhibits an evenly distributed negative linear 
relationship with butterfly species richness, the relationships between species richness and 
both artificial light at night and percent green cover are non-linear. In these plots (A and C), 
the continuous plot function combines both the linear and quadratic function in the same 
plot. At the lower end of the range, species richness declines as artificial light increases, 
however, the slope of the regression line begins to decrease after the halfway point, before 
flattening out in the top 25% of values, where the variance becomes very broad.  

The plot for green cover depicts a unimodal relationship, wherein butterfly species 
richness increases as the percent of the surrounding area covered in green vegetation 
increases, but only up to a certain point, before then decreasing. To understand what this 
‘ideal’ level of green cover looks like in London, the vertex of the parabola was calculated 
using the original green cover values. Based on these calculations, butterfly species richness 
in London reaches its peak when the surrounding area (in this case, electoral ward), is at 
approximately 40% green cover.  
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5 | DISCUSSION 
 
5.1 Global 
 Based on the data sets used in this study, changes in global insect biodiversity are 
very difficult to predict, and there is no clear relaLonship between urbanisaLon and either 
insect abundance or insect species richness. Even in the interacLon model, which intended 
to test the hypothesis that urbanisaLon exerts its influence in different ways and extremes 
depending on the surrounding land use, no significant relaLonships were found. This 
suggests that, at the global level, there are other large-scale variables not captured by these 
urbanisaLon metrics that have significance in determining insect biodiversity. 
 One such predictor is climate, which is not accounted for in my models, but which 
has been shown to significantly influence both biodiversity and the impacts of urbanisaLon. 
In a paper analysing the response of biodiversity to different levels of land use intensity in 
cropland and secondary vegetaLon, it was found that the effects of landscape-level 
differences on local biodiversity varied both in size and direcLon based on whether the study 
site was located in a tropical vs. non-tropical region (Outhwaite et al., 2022). Such regional 
differences can also influence specifically urban biodiversity. While a large majority of the 
studies looking at urbanisaLon’s impact on biodiversity originate in ciLes with temperate 
climates, some interesLng findings have emerged from regions with more extreme climes 
(Faeth, Bang and Saari, 2011). In temperate ciLes, species richness is generally lower than in 
the surrounding area, with somewhat less dramaLc declines in species abundance, while in 
tropical ciLes, both biodiversity metrics suffer significant declines. However, in arid ciLes, 
species abundance tends to increase compared to the surrounding area, and species 
richness is just as likely to increase as it is decrease (Faeth, Bang and Saari, 2011).  
 While breaking the data out into tropical and non-tropical climates might help to 
explain urbanisaLon’s relaLonship to insect biodiversity, other ‘city-level’ characterisLcs 
could also provide a clarifying filter for the data, such as a city’s size, age and context 
(Norton et al., 2016). Other variables that might contextualise the data are GDP, levels of 
development, or geopoliLcs, contribuLng to an interrogaLon of the social components of 
socioecology. Though this kind of scruLny was outside the scope of this study, an analysis of 
ciLes grouped by their age or their size—either by density or volume—could provide 
interacLons that help refine this type of global study and capture more nuance than can be 
provided from the basic land use categories.  

The significant result of this study—that insect species richness faces declines in 
plantaLons and cropland—is not a new finding (Wagner, 2020), nor, on the surface, is it 
related to urban expansion. However, with urban expansion in many parts of the world 
encroaching on agricultural land (Ustaoglu and Williams, 2017), there might in fact be a 
connecLon between cropland/plantaLons and urban areas. What does the biodiversity look 
like in urban areas developed on land converted from agricultural use? When measuring 
changes in biodiversity azer converLng land from agriculture to urban, will biodiversity 
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increase? Would the city then act as a sanctuary, providing more diverse habitats, as well as 
refuge from intensive pesLcide use in the surrounding area (Spotswood et al., 2021)? Or 
would species richness remain low, azer being so reduced during its agricultural use? 
 While the global study didn’t yield specific takeaways for how to interpret 
urbanisaLon’s impact on global biodiversity, it confirms the importance of landscape-level 
and even regional context in assessing how human pressures influence changes in 
biodiversity. 
 
5.2 | London 
5.2.1 Contextualising the results: Land cover 

Though London in its enLrety could broadly be classed as ‘urban’, that is a 
classificaLon that would gloss over much of the nuances in land cover and use that make 
London such a unique habitat for both humans and wildlife. Undoubtedly a city shaped by 
intensive urbanisaLon, London is also a city with ample green space, woodlands, and even 
wetlands. Analysing the response of buKerfly species richness to different land cover 
categories across the capital gives us insight into how the wider landscape might serve 
biodiversity. While at the global scale there was high uncertainty around the impact of many 
of the land uses, and even direcLonally it was difficult to draw conclusions, the picture for 
London is very clear: within this landscape that has already been significantly influenced by 
human pressures, each addiLonal level of disturbance has a negaLve impact on buKerfly 
species richness.  

Based on these findings, how might we beKer manage the land for wildlife? How can 
we encourage the highly urban areas to behave more like the suburban areas? How can we 
increase the biodiversity of the green space in our suburban neighbourhoods so they might 
offer the support of richer grassland? Can we incorporate more blue infrastructure into the 
built environment to get the benefit of freshwater habitats? In a place like the City of 
London—blanketed as it is in concrete—it may feel like land cover is established. But could 
the inclusion of trees on every street provide safe passage for certain mobile species, and 
boost biodiversity metrics in even London’s most urban neighbourhoods? 

 
5.2.2 Contextualising the results: Ar\ficial light at night 
 Because the relaLonship between buKerfly species richness and arLficial light at 
night produced such great variance at high values, it is uncertain how species richness 
responds in areas of extreme light polluLon, based solely on the model. However, in 
mapping these extreme values, we might be able to glean some addiLonal informaLon 
about the other factors possibly influencing biodiversity under nighFme light. Figure 13 is a 
visualisaLon of buKerfly survey sites near areas of high light polluLon, showing that most of 
these very high values are clustered around central London, with its abundance of office 
buildings, hotels, theatres and shops. However, there a few points outside the centre 
generaLng high levels of light polluLon: Heathrow airport, Kings Cross, and a few areas that 
have big stadiums or shopping centres, or both, like Wembley, Twickenham and Straxord. 
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Given that these bright spots shine in such different areas—in some of the most built-up 
neighbourhoods, and others with significant wild land—the responses of buKerfly species 
richness varies greatly. While the bright lights of central London are likely to be correlated 
with lower levels of biodiversity, as well as interacLons with other urbanisaLon drivers like 
impervious surface area, bright lights further away from the city centre might not have as 
negaLve of an effect. In this sense, the impact of arLficial light at night, at least at the 
extremes, might be dimmed somewhat by the larger landscape: the wildflowers and 
brownfield sites around Olympic park, the riverside vegetaLon of Twickenham, and the 
green buffer of Regent’s Park against the industrial backdrop of King’s Cross. 
 

 
FIGURE 15: BuKerfly sites with the highest levels of light polluLon, falling in the top 2% of 
values. 

 
5.2.3 Contextualising the results: Green cover 

The ward-level green cover data set presents the opportunity to analyse the impact 
of landscape-level factors on local biodiversity and assess the degree to which the wider 
landscape influences patch-level biodiversity. I had hypothesised that buKerfly species 
richness would exhibit a posiLve linear relaLonship with percent green cover, which is an 
assumpLon is backed up by many studies, but also one that just seems to make sense. In a 
meta-analysis of intra-urban biodiversity conducted across 75 ciLes, researchers found that 
the proporLon of green surroundings has a posiLve influence on biodiversity, and that the 
two most influenLal characterisLcs that benefiKed biodiversity were the size of the habitat 



 47 

patch, and the connecLvity between green spaces (Beninde, Veith and Hochkirch, 2015). 
While in this study buKerfly species richness increases with percent green cover at lower 
levels, it is far from the full picture. There are clearly other factors prevenLng high levels of 
green cover in London wards from exerLng a posiLve influence on biodiversity.  

Some London wards were measured as being as much as 90% green1, but the type 
and quality of this ‘greenness’ was not made explicit. In this case, green cover could be 
short-mown amenity fields or wildflower meadows, small front gardens or species-rich 
nature reserves, a well-trimmed rose bush or a long line of hedgerows, all of which offer 
vastly different levels of biodiversity and quality of habitats. It’s clear that green space is 
required for biodiversity to flourish; in London, however, there is a threshold above which it 
may be the quality, and not the quanLty, of green space that determines species richness in 
an area. 
  
 

 
FIGURE 16: The unimodal relaLonship between buKerfly species richness and ward-level 
green cover. The x-axis values are scaled and centred around zero.  
 
 This non-linear relaLonship, which, on average becomes negaLve in wards with more 
than 50% green cover, could also be indicaLve of other factors that influence species 
richness. Figure 15 shows a map of London’s electoral wards coloured using the percent of 
the ward that was classified as ‘green’ by the Greater London Authority. The maps show 
many of the greenest wards on the outskirts of London, where the city abuts the Green Belt 
and its high proporLon of agricultural land. Though most agricultural land is certainly ‘green’, 
intensive management and heavy use of pesLcides makes it inhospitable for many insects. 
Further, pesLcides don’t just impact the land they are used on, but can travel great distances 
through the air, contaminaLng land further afield (Zaller et al., 2022). The green belt is 
intended to protect the surrounding countryside from urbanisaLon, but, with 65% of green 

 
1 Measurement classifica/on described in the research methods sec/on 
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belt land used for agriculture (CPRE, 2023), it might have the unintended consequence of 
harming biodiversity within the Greater London boundaries. 

Something else that can be found in abundance around Greater London is 
motorways, bringing air and noise polluLon to the area. Though under-studied, these forms 
of polluLon have also been shown to negaLvely affect insect biodiversity (Fenoglio et al., 
2021). Though this study doesn’t include a temporal analysis, further research could be 
done to examine the impacts of ULEZ’s expansion across greater London, to assess if this 
regulaLon is beKer not only for humans but wildlife too. 
 Though the specific designaLon of electoral wards was not criLcal to this analysis, 
interrogaLng the influence—if any—of green cover on elecLons could open up conversaLon 
around the poliLcs of green space. These fringe wards have pockets housing some of 
London’s lowest income families (Leeser, 2021), and are also in the closest proximity to 
agricultural land; how might these and other electoral interests intersect with the provision 
of green space?  
 

 
Figure 17. Ward-level green cover data. This map was created using 2022 green cover data 
and ward boundaries (GLA), projected onto a 2018 ward shapefile (the most recent 
available) using centroids from the original dataset’s geometry. White spaces in the map 
represent wards that did not have any buKerfly survey sites. 
 
5.3 Building biodiverse ci\es 

The effect of impervious surface area in London, esLmated with ‘built-up cover’ data, 
conformed to the hypothesis that species richness decreases with increasing levels of 
urbanisaLon. Building structures are specifically erected to protect humans from their 
surroundings, providing shelter, and in the process, creaLng barriers and inhospitable 
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environments for wildlife. Buildings and housing must necessarily convert land from its 
previous use—be it agriculture, woodland, or something in between—and given the 
projected urban expansion, the amount of built-up surface area in ciLes will only increase. 
The quesLon then is not, how can we decrease built-up surfaces, but how can we lessen its 
impacts on biodiversity? What are the tools that will allow us to build biodiversity into our 
ciLes, rather than aKempLng to keep it out?  

One of the key ways to alleviate the pressures of urbanisaLon is through the delivery 
of green infrastructure, using green walls, green roofs, wildlife corridors and sustainable 
drainage systems to integrate nature into the built environment (Filazzola, Shrestha and 
MacIvor, 2019). These kinds of features can absorb some of the impacts of urbanisaLon that 
negaLvely impact humans and wildlife alike, such as polluLon and urban heat islands, while 
ozen directly providing wildlife with semi-natural habitats (Ying et al., 2022). Especially if we 
are to view green infrastructure as potenLal habitat, its provision must be thoughxul, and 
not merely a box-Lcking exercise. The influence of the surrounding area must be brought 
into planning and decision-making, as there are a plethora of external variables that can 
impede upon the success of GI, such as invasive species (ozen from gardens), soil erosion 
from construcLon, and the amount and type of impervious surface in the nearby area 
(Hostetler, Allen and Meurk, 2011). Biodiversity must also be explicitly prioriLsed in the 
planning and provision of green infrastructure, and not viewed as a secondary or even 
terLary goal, as is ozen the case (Filazzola, Shrestha and MacIvor, 2019). The results from 
this study support the evidence that building nature into our ciLes, and realising the full 
potenLal of urban spaces to provide habitat for wildlife can greatly benefit biodiversity and 
lessen the negaLve impacts of urbanisaLon for all species. 

There is evidence that London has acknwledged the value of green infrastructure and 
biodiversity for the city. The 2021 London Plan contains significant informaLon on green 
infrastructure and its benefits to people, wildlife, and the built environment, and the Mayor 
of London has set a target for 50% of London to be ‘green’ by 2050 (Green Infrastructure, 
2024). Further, statutory Biodiversity Net Gain went into effect in 2024, requiring all new 
developments to deliver a 10% increase in biodiversity (Understanding biodiversity net gain, 
2024). While in theory this is an excellent way to protect and foster biodiversity in the city, 
off-site biodiversity credits are part of the miLgaLon hierarchy, which could lead to 
developers simply pushing these gains elsewhere. Some private developers, like the 
Grosvenor Estate, have created far more ambiLous goals, targeLng anywhere from 12 to 
100% biodiversity net gain by 2030 (Grosvenor Estate, 2022).  

A world with greener, more biodiverse ciLes will benefits not just wildlife, but people 
too. In mulLple studies, biodiversity has been posiLvely correlated with human wellbeing 
(Fuller et al., 2007; Sandifer, SuKon-Grier and Ward, 2015), and more biodiverse green 
spaces have been associated with greater ‘restoraLve effects’ on people regardless of their 
age, gender or ethnicity (Wood et al., 2018). These studies highlight the socioecology of 
urban biodiversity studies, and make the case for holisLc approaches to both human and 
planetary health. We must leave behind the nature-culture dualism once and for all, and 
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embrace our connecLon to nature, no maKer the landscape we see through our window. 
CiLes may never be as biodiverse as nature reserves, but with foresight, planning and 
coordinaLon, we can develop ciLes that act as habitats for all living species, deserving of 
conservaLon acLon for wildlife in just the same way as hedgerows, woodlands and orchards. 
 
5.4 Limita\ons and Considera\ons 

Data limitaLons—including both availability and useability—influenced analysis and 
results at both the local and global levels. Firstly, finding appropriate urbanisaLon datasets, 
especially at the global scale, presented significant challenges. Many data sets were at very 
fine scales, which, when applied on a global level, required the merging of hundreds of Lff 
files and massive amounts of compuLng power. For example, the data set for impervious 
surface area (ISA) created by Huang and Li (2021) was collected at 30 meters, generaLng a 
large amount of heavy files that R was unable to process. Further, 30 meters is probably not 
an appropriate spaLal resoluLon for a global data set, where landscape-level variables are 
potenLally more influenLal. In its place, the built-up cover data from the Global Human 
SeKlement Layer Project was selected as a proxy for impervious surface area. However, what 
is not made explicit in the metadata is whether paved-over surfaces other than buildings 
have been classed as built-up surface area. As cities are so much more than just their 
buildings, and as impervious surfaces abound in the form of paths, parking lots and town 
squares, this data may not fully capture the extent of impervious surfaces and their impact 
on biodiversity. Based on the upper limits of the raw London data—which was only 61% at a 
100 meter resolution—this data does not include all impervious surface area, rather, only 
that bounded by a building wall perimeter. In this way, the data reflects only surfaces that 
are truly built up, rather than all surfaces where soil has been covered by impermeable 
materials, likely creating an incomplete picture of the impact of this feature commonly 
associated with decreased biodiversity. 

Though I originally set out to analyse the impact of urban heat island effect (UHI) on 
biodiversity, analysis against this metric was not available in a meaningful way due to 
significant gaps in the data that stem from the way it was collected and categorised. UHI 
and ISA are correlated, so it is likely that some of this impact is captured by the built-up 
surface data. However, again, because the built-up data is potentially not as robust as true 
ISA data, this study may not be capturing that correlation either. 

There is the potenLal for significant bias in both biodiversity data sets due to a 
species’ conservaLon status or detectability, the focus of the researcher, or the geographical 
bias and/or data-rich or -poor areas (Boakes et al., 2010). For the BuKerfly ConservaLon 
data, there is an addiLonal layer of inherent bias due to the nature of the data, which was 
predominantly collected through ciLzen science surveys. Though this method is increasingly 
gaining recogniLon as a form of high-quality primary data collecLon, and all the buKerfly 
records in the data set have been verified, observaLons can sLll be biased by the person 
surveying, in terms of species observed and recognised, locaLons surveyed, and sampling 
effort (Callaghan et al., 2021)  



 51 

For the London data set, only species richness was analysed because abundance 
numbers cannot be inferred from presence-only data. This greatly limits the analysis of 
buKerfly biodiversity in London, as it only tells one part of the story, especially as abundance 
and species richness do not always react the same way to urbanisaLon (Faeth, Bang and 
Saari, 2011). It is ozen habitat specialists that are the most sensiLve to environmental 
change, while generalist species can usually adapt more easily (Vickery, 2008).  

Because both of these studies examined differences in biodiversity across space, I 
was unable to analyse changes in biodiversity over Lme, though that would have added 
significantly to the study, especially as the world rapidly urbanises.  

The decision to select or exclude certain data sets inherently precludes the use of 
other data sets in this analysis. All results are specific to the data used for these studies and 
must be considered in that context. Multi-city studies with varying levels of urbanisation or 
other unique characteristics would produce interesting data for comparison and help 
contextualise some of these findings. 
 
 
6 | Conclusion 
 
 This study pulls together biodiversity and urbanisaLon data at global and local scales 
to beKer understand the impact of urbanisaLon on insect biodiversity. For centuries, ciLes 
have provided people with economic opportuniLes, cultural exploraLon, and refuge from 
discriminaLon. Home to some of the largest universiLes and insLtuLons, they are hubs of 
intellectual curiosity, interrogaLon and discovery. CiLes have shaped, stretched and 
strengthened the human experience. But they have also been at the heart of the biodiversity 
crisis, demanding outsize energy and natural resources, releasing polluLon into the sky and 
the sea, and snatching up wild habitat to saLate the hunger of urban expansion. We have 
sacrificed the safety of countless other species to pursue our own ambiLon and comfort. But 
the wellbeing of humans and wildlife are not mutually exclusive, and we can sLll live good 
lives while providing adequate habitat for the many species we share our ciLes with.  

If we understand how urbanisaLon influences biodiversity and how we might reduce 
its negaLve impacts, as well as what the interplay looks like between landscape- and patch-
level variables, we can develop more wildlife-friendly ciLes and towns. This study showed 
that the extent of built-up surfaces in an area is negaLvely correlated with buKerfly species 
richness in almost all cases across London, suggesLng that this variable is a useful indicator 
of urbanisaLon’s impact on biodiversity. Decreasing the magnitude of the effect of built-up 
areas can benefit buKerfly species richness, and likely biodiversity more generally. 
IncorporaLng nature into the built environment through the provision of green 
infrastructure that explicitly prioriLses biodiversity is one of the best ways to protect 
biodiversity in built-up areas. As the green cover data showed, quanLty cannot always be 
subsLtuted for quality, and thoughxul consideraLon of biodiversity in urban green space 
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management is necessary for it to thrive. City-wide coordinaLon of green spaces and green 
infrastructure is recommended so that both landscape and local variables are accounted for. 

Larger-scale biodiversity paKerns related to urban expansion need further 
consideraLon, and future studies might benefit from breaking down global biodiversity into 
its consLtuent pieces. Though drawing conclusions about biodiversity’s response to 
urbanisaLon at the global scale is appealing, single- or mulL-city studies may be more 
appropriate, given the broad range of factors that influence the composiLon and behaviour 
of urban systems. Future urban biodiversity studies should focus on Asia, Africa and South 
America, to fill the exisLng knowledge gap and concentrate resources on the areas that will 
experience the biggest increases in urban development in the coming years. 

The ciLes of tomorrow could be hoKer, greyer and more devoid of life, or they could 
be colourful, vibrant places pulsing with the movement and sounds of wildlife. The decision 
to summon the compassion and will to make our ciLes beKer for all living things, or focus 
solely on short-term human interests, lies with all of us. 
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