

Dissertation:

Basic Income and Gender Empowerment: An Intersectional Approach to Evaluating BI's Impact in Finland

CANDIDATE NUMBER: JNLM4
CANDIDATE NAME: Viswanathan Veerappan

MODULE CODE: BGLP0014

WORD COUNT: 14507

IGP MSc COURSEWORK

DECLARATION OF OWNERSHIP AND COPYRIGHT FORM

1. DECLARATION OF OWNERSHIP

I confirm that I have read and understood the guidelines on plagiarism produced by IGP and UCL, that I understand the meaning of plagiarism as defined in those guidelines, and that I may be penalised for submitting work that has been plagiarised.

This piece of coursework must be submitted electronically through Turnitin on Moodle by the stipulated deadline. I understand that the coursework cannot be assessed unless it is submitted online and that penalties will be applied for late submissions as per UCL and IGP guidelines unless there is an approved case for Extenuating Circumstances or Reasonable Adjustments.

I declare that all material is entirely my own work except where explicitly, clearly and individually indicated and that all sources used in its preparation and all quotations are clearly cited using a recognised system for referencing and citation. Should this statement prove to be untrue, I recognise the right of the Board of Examiners to recommend disciplinary action in line with UCL regulations.

2. COPYRIGHT

The copyright of the coursework remains with me as its author. However, I understand that anonymised copies may be made available to future students for reference. Please, tick the box if you DO NOT want this report to be made available for teaching purposes.

Abstract

This dissertation investigates the gendered impact of Basic Income (BI) on empowerment in Finland, utilizing an expanded empowerment index and an intersectional approach. The research challenges contrasting theories surrounding UBI's effects on women's empowerment: some argue that UBI reinforces traditional gender roles, while others suggest it enhances women's autonomy.

The study addresses two key questions: how BI affects a comprehensive empowerment index across genders, and what intersectional factors influence this impact in Finland. Drawing from the 2017-2018 Finnish Basic Income experiment, this study develops an expanded empowerment index that includes various dimensions such as life satisfaction, health, mental well-being, cognitive function, social capital, and meaningful work. The study examines responses from the UBI-treated group (n = 569) and a control group (n = 1,028), employing χ^2 statistics and regression analyses to evaluate the effects of UBI on empowerment across various intersectional categories, including age, education, household composition, income, and urbanization.

Our findings, consistent with previous research (Kangas et al., 2023), indicate that UBI can equally enhance individual empowerment for both men and women. However, our intersectional analysis reveals nuanced variations in empowerment outcomes based on factors such as age, education and household composition. Notably, a marginally significant three-way interaction between treatment, gender, and household composition suggests that UBI's impact may vary depending on family structure, partially supporting theories regarding UBI's potential to alter traditional gender roles.

This research underscores the importance of considering intersectional factors in UBI policy design and evaluation, contributing to the ongoing debate about UBI's role in promoting gender equality and empowerment through nuanced, context-specific approaches.

Keywords: Basic Income, Gender Equality, Empowerment, Finland, Intersectionality

Contents

Α	bstra	act	. 3
1.	. A	cknowledgement	. 6
2.	. Ir	ntroduction	. 7
3.	Li	iterature review	. 9
	3.1	Introduction to Universal Basic Income (UBI)	. 9
	3	.1.1 Definition and Overview of UBI	. 9
	3	.1.2 Historical Context and Implementation	. 9
	3	.1.3 UBI in the Context of Welfare States	10
	3.2	. Conceptualizing Empowerment	11
	3	.2.1 Defining Empowerment in a Gendered Context	11
	3	.2.2 Theories of Empowerment: A Feminist Perspective and UBI	12
	3	.2.3 Comparative Analysis of Theoretical Approaches	14
	3.3	. Gender and Empowerment in the Context of UBI	14
	3	.3.1 For UBI as an Empowerment Tool	15
	3	.3.2 Against UBI: The Risk of Reinforcing Traditional Gender Roles	15
	3.4	Intersectionality in UBI	16
	3	.4.1 Historical Context of Intersectionality in Welfare Movements:	16
	3	.4.2 Theoretical Frameworks for Intersectional Analysis in UBI	17
	3	.4.3 Recent Intersectional Studies on UBI	18
	3.5	Previous Studies and their pitfalls	19
	3	.5.1 Pilot studies in US, India and Finland	19
	3	.5.2 Limitations of the Finland Empowerment Index	20
4.	. M	1ethodology and Methods	21
	4.1	Research design and rationale	21
	4.2	Data source: Finnish UBI experiment	21
	4.3	Variables, measures and justification2	23
	4.4	Limitations	31
5.	R	esults and discussion	32
	5.1	No gender differences	32
	5.2	Complex Intersectional Effects	33
	5.3	Reflection on Limitations	36

6.	Conclusion	40
7.	References	42
8.	Appendix	51
	Appendix A – Sub Index and Expanded Index Creations	51
	Appendix B – Reliability and Factor Analysis of all Index	55
	Appendix C - Old Empowerment Index – Add creation	55
	Appendix D – GLM For Expanded Empowerment Index and Sub Index	59
	Appendix E – 5 Intersectional Analysis	81

1. Acknowledgement

I would like to thank the Commonwealth Shared Scholarship, UCL, and the Institute for Global Prosperity (IGP) for providing me with this wonderful opportunity to pursue a master's degree at such a prestigious institution. I am deeply grateful to my mentors, Sandeep, Suparna, and Kamakshi, for providing references during the scholarship and college application process—without their support, I wouldn't have been able to pursue this master's.

A heartfelt thank you to my supervisor, Dr. Saffron Woodcraft, for patiently addressing all my questions and concerns, and for guiding me with such clarity and calm. Each time I came to our supervisory meetings feeling confused, I left with a clear direction thanks to your thoughtful insights.

I would also like to thank Dr. Mara Torres Pinedo for your guidance throughout the dissertation module and for always being available to address my queries or provide clarity and suggestions.

Additionally, I extend my gratitude to Dr. Olavi Kangas and Dr. Jurgen De Wispelaere for readily answering all my questions related to data collection and analysis in the previous Basic Income gender study of Finland.

Lastly, I want to express my deepest thanks to my mother, Bhuvaneshwari V, my father, Veerappan CT, my partner, Kajal Boraste, and my close friends for always being there for me, supporting and cheering me on in every endeavour I choose.

2. Introduction

Universal Basic Income (UBI) is a social welfare concept gaining traction globally, particularly in light of increasing automation, joblessness, and precarious employment. As highlighted by United Nations Secretary-General António Guterres in 2018, governments may need to consider UBI as a response to these challenges (Guterres, 2018). The concept has featured in political campaigns across diverse nations, including India, Mexico, and the United States, reflecting its growing relevance in policy discussions.

UBI aims to transform societies by empowering citizens and promoting human flourishing. However, historical precedents suggest that ambitious political movements often deprioritize gender equality in favour of other interests (Koslowski and Duvander, 2018). In scholarly debates, UBI's effects on gender are typically centred around two main themes: emancipation and employment (Kangas et al., 2023).

Supporters contend that UBI, being both universal and allocated on an individual basis, enhances women's autonomy both within their families and in the broader societal context. By providing women with their own income, UBI is considered a tool for liberation from patriarchal power structures, empowering women to make autonomous decisions about their lives (McLean, 2016; Robeyns, 2001). Additionally, UBI is posited to address income disparities between genders and provide protection against poverty, potentially offering women greater flexibility in choosing between employment and care work (Pateman, 2004).

However, critics argue that UBI might reinforce traditional gender roles, potentially trapping women in caregiving responsibilities rather than encouraging labour market participation and broader societal engagement (Gheaus, 2008; Robeyns, 2001). This perspective suggests that UBI could inadvertently limit women's freedom of choice and hinder progress towards gender equality.

Despite the importance of these debates, there is a notable lack of empirical research examining whether UBI empowers women or reinforces traditional gender norms. The sole gender-focused study by Kangas et al. (2023) on the Finland BI pilot considered a limited range of empowerment factors and failed to account for important intersectional dimensions.

This study aims to bridge critical gaps in the existing literature by examining the gendered impact of UBI through an expanded empowerment index, thereby contributing to a deeper understanding of its role in shaping future social welfare policies. The research hypothesis posits that an Expanded Empowerment Index, building on previous studies but incorporating additional factors such as Life Satisfaction, Health and Work Capacity, Mental Wellbeing, Cognitive Functioning, Social Capital and Trust, Meaningful Work, and Material Wellbeing, will reveal significant improvements among female UBI recipients compared to male recipients and non-recipients.

The study addresses two specific research questions:

- 1. How does Basic Income affect a comprehensive Expanded Empowerment Index, and are there gender-specific differences in these effects?
- 2. What intersectional factors influence the impact of Basic Income on the comprehensive Expanded Empowerment Index in Finland, and how do these findings inform our understanding of UBI's potential effects on gender dynamics?

This research contributes to the broader debate on UBI's role in promoting or hindering gender equality in established welfare states. By employing an intersectional approach and a more comprehensive empowerment index, this study seeks to offer a nuanced perspective on UBI's impact on gender empowerment, taking into account various demographic factors, including age, education, income level, household composition, and degree of urbanization.

The following sections will review existing literature on UBI, its historical context, and implementations, with a focus on welfare states. The study will then explore conceptualizations of empowerment, feminist theories of empowerment and UBI, and intersectionality in the context of UBI. Subsequently, the methodology, drawing on various empowerment measurement approaches, will be outlined. The results will be presented and discussed, comparing findings with previous studies and exploring implications for gendered aspects of UBI. Finally, the study will discuss its limitations and propose avenues for future research.

The key findings of this study reveal that while Basic Income (UBI) has a significant overall impact on empowerment, its effects are nuanced and complex. The lack of significant gendertreatment interaction in the Expanded Empowerment Index suggests that UBI's effect on empowerment is similar for men and women in Finland's highly egalitarian welfare state. However, the analysis uncovers significant gender-specific patterns in relation to age, education, and household composition, indicating that UBI interacts differently with these factors, influencing empowerment outcomes across various demographic groups. In particular, the marginally significant interaction between treatment, gender, and household composition, along with the higher empowerment scores for women in all-adult households and men in households with children, highlights how caregiving responsibilities and family structure play a crucial role in shaping UBI's impact. These findings suggest that UBI's potential to alter traditional gender roles and promote more equitable caregiving arrangements, as theorized by McKay (2007) and Van Parijs (2014), may only be partially realized and depends on broader societal contexts. This study contributes to the ongoing debate about UBI's role in promoting gender equality and empowerment, emphasizing the need for nuanced, contextspecific approaches in UBI implementation and assessment.

3. Literature review

3.1 Introduction to Universal Basic Income (UBI)

3.1.1 Definition and Overview of UBI

The notion of Universal Basic Income (UBI) has an extensive and diverse background, with proponents across the political spectrum advocating for its implementation (Haagh, 2019; Francese and Prady, 2018). It is gaining attention as a potential solution following the COVID-19 pandemic's economic impact. Moreover, UBI is increasingly suggested as a strategy to tackle issues such as job market instability, economic growth without employment gains, and the rise in economic disparity and poverty, which are being exacerbated by technological progress like AI, automation, and machine learning, potentially eliminating many routine and manual jobs.

The proposal for Universal Basic Income is founded on the principles of universality, individuality, continuity, and unconditionality (Williams, 2021). Its universal and unconditional nature distinguishes it from current cash transfer programs supported by the state. A universal basic income would be a regular payment provided to every adult in society, with additional payments for children given to their parents or guardians. This income would be distributed universally, meaning it would be available to all individuals irrespective of their job status, earnings, or living situation, and it would be unconditional, requiring no specific criteria to be met.

These characteristics set Universal Basic Income (UBI) apart from most current social protection systems, although there is ongoing debate about its relationship with these systems. Universal Basic Income (UBI) is characterized by its non-contributory nature, meaning that eligibility and benefit amounts are not determined by previous contributions (Standing, 2017). This sets it apart from contributory social insurance systems, which primarily benefit those with consistent formal employment throughout their lives. Feminist critics have long pointed out that these traditional systems tend to reinforce conventional gender roles and family structures, often failing to provide adequate support for individuals who are unable to engage in full-time formal employment due to factors such as discrimination or caregiving responsibilities (Williams, 2021).

3.1.2 Historical Context and Implementation

The concept of a basic income has deep historical roots, far predating the contemporary debates surrounding welfare reform. Support for a government-backed income maintenance system aimed at ensuring a basic standard of living for all individuals has roots dating back to the 18th century (Van Parijs & Vanderborght, 2017). Historically, such proposals have often centred on concerns about personal freedom and the limitations of traditional labour markets in ensuring economic security. Modern advocates of basic income echo these concerns while

also pointing out the inadequacies of current social security systems within the complex socioeconomic landscape of contemporary capitalism (Standing, 2017).

Despite growing interest and the compelling conceptual and practical justifications for basic income, such as those presented by Philippe Van Parijs in 1992, no government has yet fully implemented this policy. Nonetheless, over the past few decades, state-supported income security programs in advanced capitalist societies have come under scrutiny for their sustainability and effectiveness. The ongoing discussion about the future direction of state welfare provision remains highly relevant, with the idea of a universal, unconditional, minimum-income guarantee being a significant part of this debate.

Throughout the past century, researchers and policymakers have explored various forms of Universal Basic Income (UBI) through diverse experimental designs. The 1960s and 1970s saw early iterations in the United States, such as the New Jersey Negative Income Tax Experiment and the Gary Income Maintenance Experiment, which examined the impact of cash transfers on low-income households (Hoynes & Rothstein, 2019). In recent years, UBI trials have expanded globally. Finland implemented a study providing unemployed adults with a monthly stipend of 560 euros to assess labor market effects (Kangas et al., 2021). In rural Kenya, an ongoing experiment by GiveDirectly allocates \$22 monthly to every adult in a selected village for a 12-year period (GiveDirectly, 2023). India witnessed a collaborative effort between the Self-Employed Women's Association (SEWA) and UNICEF, involving 6,000 participants, while Ontario, Canada conducted a similar initiative with 4,000 individuals (Kangas et al., 2019; Handa et al., 2018; Davala et al., 2015). These studies have varied in their approach, timeframe, and target populations, contributing to a growing knowledge base on UBI's potential impacts. Despite these experimental efforts, no national government has fully implemented a UBI policy to date (De Wispelaere, 2015). It's worth noting that gender-specific outcomes have not been a primary focus in any of these trials.

3.1.3 UBI in the Context of Welfare States

The idea of Universal Basic Income (UBI) is not new and has been considered within the broader context of welfare states, especially in Nordic countries like Finland. These countries have long engaged with the basic income concept, with some discussions tracing back to the years following the Second World War (Meade, 1964). Finland, in particular, is of interest due to its historical and contemporary efforts to experiment with basic income.

Recent academic research has explored incorporating basic income into current social support systems, often conceptualizing it as a supplementary component of established social welfare programs and democratic principles (Jordan, 2008; Haagh, 2011). The consideration of basic income as part of a broader welfare state reform acknowledges the global economic pressures, such as the marketization of public services and the financialization of economies, which challenge the sustainability of traditional welfare systems (Haagh, 2011, 2019). These

pressures impact the political feasibility and design of a potential basic income policy, influencing the outcomes it could achieve (De Wispelaere & Martinelli, 2017).

Austerity measures following the 2008 financial crisis have significantly influenced welfare policies across Europe, leading to increased economic insecurity. This has increased interest in basic income as a potential substitute for welfare programs based on means-testing, though different nations vary in their ability to implement such a policy change (De Wispelaere, 2017; Standing, 2017; Haagh, 2019). The Nordic model, particularly Finland's, presents a unique perspective on how UBI might fit within a welfare state, characterized by high levels of public spending and a commitment to individual rights and gender equality (Kettunen, 1999).

In 2015, Finland launched a notable basic income experiment, initiated by a centre-right coalition, which provided a monthly cash payment to unemployed individuals to assess its impact on employment and well-being (Kangas et al., 2017; De Wispelaere et al., 2018). Although Finland and other Nordic countries are often seen as leaders in gender equality, some policies, like the child home care allowance, have been critiqued for reinforcing traditional gender roles (Hiilamo & Kangas, 2016).

Overall, UBI's potential to complement and reform welfare states, particularly in the context of Nordic countries, remains a critical area of study and debate.

3.2. Conceptualizing Empowerment

The literature on women's empowerment often adopts one of two primary perspectives. The first group of studies investigates the theoretical underpinnings, frameworks, and factors that influence women's empowerment. The second group of studies explores various indicators and measures that can be used to assess women's empowerment. In this section, I will focus only the empowerment angle and focus on the measurement of empowerment in the methodology section.

3.2.1 Defining Empowerment in a Gendered Context

Empowerment, a term widely used in development discourse over the past 30 years, has undergone significant transformation. Originally, it was a politically charged concept, rooted in collective struggles for social justice, equality, and the transformation of power relations (Gaventa, 2002, cited in Batliwala, 2007). The term empowerment can be traced to the Protestant Reformation in Europe and has subsequently resonated within various social and political movements, including Quakerism, early capitalism, and the Black Power movement (Gaventa, 2002, cited in Batliwala, 2007). In the latter half of the 20th century, feminist movements, liberation theology, and other progressive causes revitalized the concept of empowerment, utilizing it to describe grassroots initiatives aimed at challenging and transforming oppressive and unequal power structures (Cornwall, 2016).

In a gendered context, empowerment is understood as a process that enables women to gain control over their lives by making strategic choices (Kabeer, 1999) and influencing decisions

that affect their social and economic conditions. Women's empowerment is closely linked to rights such as access to education, legal autonomy, and reproductive rights, all essential for achieving gender equality (Sen, 1999). Economic independence, including employment opportunities and financial control, is crucial for reducing dependency (Agarwal, 1994).

Moreover, empowerment encompasses social agency, with women acting as agents of change within their communities. This involves challenging social norms and influencing policies to advance gender equality (Rowlands, 1997). However, the mainstreaming of empowerment in development has often reduced it to an economic tool, sidelining its original emphasis on collective action and social justice. While widely discussed today, empowerment has sometimes lost its transformative depth, becoming more focused on individual achievements rather than collective struggles for systemic change (Cornwall & Edwards, 2014).

3.2.2 Theories of Empowerment: A Feminist Perspective and UBI

Empowerment has been central to feminist scholarship, viewed both as a process and an outcome enabling women to participate fully in societal decision-making. Theories of empowerment offer nuanced insights, particularly relevant when applied to UBI, which could potentially address systemic inequalities. This section explores key feminist theories and their relevance to UBI and gender.

Sen and Nussbaum's Capabilities Approach

Amartya Sen and Martha Nussbaum's Capabilities Approach provides a foundational framework for understanding empowerment. Sen (1999) defines empowerment as the expansion of individual capabilities—the real opportunities to lead a life of value. In the context of gender, the approach emphasizes creating conditions that enable women to develop and exercise these capabilities, such as education, health, and political participation.

Nussbaum (2000) expands this by identifying specific capabilities essential for women's empowerment, including bodily health, emotional well-being, and social relationships. This approach emphasizes that true empowerment requires more than access to resources—it also demands the freedom to pursue and achieve valued goals. In a gender analysis, the Capabilities Approach highlights the need for structural changes to eliminate barriers that limit women's potential. For UBI, this approach suggests that financial support alone may not suffice without removing social and institutional obstacles.

Srilatha Batliwala's Empowerment Framework

Srilatha Batliwala's Empowerment Framework offers a nuanced perspective on the complex power dynamics women face. Batliwala (1994) conceptualizes empowerment as a transformative process through which marginalized groups, particularly women, gain control over resources, ideologies, and institutions. This framework emphasizes both individual and collective dimensions of empowerment, necessitating challenges to societal structures that perpetuate inequality. In the context of Universal Basic Income (UBI), Batliwala's model

suggests that while UBI could serve as a catalyst for economic independence, enabling women to resist dependence and engage more fully in societal roles, true empowerment requires broader structural changes. Batliwala argues that financial autonomy alone is insufficient; it must be accompanied by systemic reforms addressing inequalities in institutions and social norms (Batliwala, 1994). Thus, while UBI might provide a stable financial foundation, its effectiveness as an empowerment tool depends on its integration with wider societal transformations that dismantle oppressive power structures and challenge entrenched gender inequalities.

Andrea Cornwall's Belonging Framework

Cornwall's (2002) 'spaces for change' concept offers a nuanced perspective on empowerment in the context of Universal Basic Income (UBI). She argues that empowerment occurs when individuals can actively engage in decision-making processes that impact their lives, shifting focus from empowerment as an outcome to a process of creating inclusive spaces where individuals feel valued (Cornwall, 2002). This framework suggests that empowerment extends beyond mere financial resources or political gains, encompassing how these resources enable individuals to engage more fully in their communities and societal processes. In relation to UBI, Cornwall's approach raises important questions about how such policies might create new 'spaces' for women's participation in social and political life, fostering a sense of belonging within communities. For instance, does the financial security provided by UBI allow women to engage more in community activities, local politics, or voluntary work? This perspective encourages looking beyond economic indicators to consider how UBI might reshape social dynamics, power structures, and social cohesion at the community level. Cornwall's framework thus highlights the need for UBI to not only provide material resources but also to build inclusive social networks that recognize individuals' identities and contributions (Cornwall, 2002).

Kalpana Wilson's Critique of Empowerment Metrics

Kalpana Wilson (2011) critiques the neoliberal co-option of empowerment, often reducing it to economic participation while ignoring the structural inequalities that underpin gender oppression. Wilson argues that true empowerment must go beyond mere inclusion in the market economy and address issues of social justice and autonomy. She argues against the 'instrumentalization' of women's empowerment, where it's viewed merely as a means to achieve economic growth rather than as an end in itself. This perspective challenges the notion that UBI's success should be measured solely by increased labour market participation or economic productivity.

Wilson's critique is essential when evaluating UBI, as it challenges simplistic success metrics based solely on economic outcomes. It suggests that we should be cautious about interpreting improvements in economic indicators as automatically translating to genuine empowerment, especially if these improvements don't address underlying structural inequalities. Her

perspective calls for a broader understanding of how UBI might transform gender relations, focusing on shifts in power structures and societal norms, particularly within marginalized communities.

3.2.3 Comparative Analysis of Theoretical Approaches

The feminist perspectives outlined offer diverse lenses through which empowerment can be understood and applied to Universal Basic Income (UBI). Sen and Nussbaum's Capabilities Approach emphasizes expanding individual freedoms and opportunities, suggesting that UBI should enhance women's capabilities beyond mere financial support. Batliwala's Empowerment Framework stresses the need for collective action and structural change, implying that UBI should be part of a broader strategy for social transformation. Cornwall's Belonging Framework shifts focus to creating inclusive spaces for participation, suggesting that UBI's success should be measured by how it enables women to engage in community and political life.

Wilson's critique of empowerment metrics provides a crucial counterpoint, warning against reducing empowerment to purely economic terms and challenging simplistic measures of UBI's success. When applied to UBI, these theories collectively suggest that empowerment is multi-dimensional, requiring not just financial resources but also social, structural, and cultural transformations. This analysis underscores the importance of adopting a holistic approach to UBI and empowerment, which considers not only economic outcomes but also qualitative changes in power dynamics, agency, and social cohesion.

3.3. Gender and Empowerment in the Context of UBI

The introduction of Universal Basic Income (UBI) has sparked significant debate, particularly regarding its potential gendered impacts (Williams, 2021; Lombardozzi, 2020). Proponents argue that UBI could empower women by providing a stable and independent income source, enhancing their bargaining power within households, promoting financial independence, and enabling greater participation in decision-making processes (Davala et al., 2015; McKay, 2001). Critics caution that UBI might inadvertently reinforce traditional gender roles by encouraging women to remain in unpaid caregiving roles, perpetuating economic dependency (Haagh, 2019; Francese & Prady, 2018).

This section explores these contrasting perspectives, examining the gendered impacts of UBI and its potential to either reinforce traditional gender roles or serve as a mechanism for women's empowerment. Academic discussions on the gendered impacts of UBI have yielded two primary theories. The first posits that UBI could empower women by enhancing their financial independence, expanding their choices, and providing greater security and stability (Zelleke, 2011; Schultz, 2017; Cox, 2019). The second theory asserts that UBI could incentivize women to stay at home, perpetuating their traditional roles as primary caregivers (Robeyns, 2008).

3.3.1 For UBI as an Empowerment Tool

Proponents of Universal Basic Income argue that UBI can significantly contribute to gender equality by offering a reliable financial safety net that is not dependent on participation in the labour market. This financial security could be especially impactful for women, particularly those experiencing marginalization or multiple, intersecting forms of discrimination. UBI might empower women to explore less lucrative career paths, initiate entrepreneurial ventures, or pursue artistic endeavours without the constant burden of financial survival. The resulting economic stability has the potential to enhance women's autonomy across various spheres, including domestic life, professional environments, and community engagement (Davala et al., 2015; Kangas et al., 2023).

Additionally, UBI is considered a potential way to acknowledge and compensate for unpaid care work, a responsibility that largely falls on women (Williams, 2021). By offering a consistent financial foundation, UBI could facilitate women's efforts to juggle professional commitments with caregiving duties. This equilibrium is particularly crucial in cultures where traditional gender roles remain deeply rooted, as it could enable women to engage more comprehensively in both public and domestic domains. The autonomy derived from financial self-sufficiency might also catalyze changes in household power structures, potentially leading to increased decision-making authority and personal freedom for women (Williams, 2021).

Empirical data from UBI initiatives in India, Kenya, and Namibia confirms the potential of UBI to substantially increase women's economic stability and autonomy. In these contexts, UBI has been linked to increased financial independence for women, better health outcomes, and enhanced opportunities for education and entrepreneurship. These outcomes suggest that UBI could play a significant role in reducing gender inequalities, particularly in societies where social security systems are underdeveloped (Lombardozzi, 2020).

3.3.2 Against UBI: The Risk of Reinforcing Traditional Gender Roles

Critics of UBI argue that it could reinforce traditional gender roles by encouraging women to stay at home, entrenched in caregiving responsibilities (Gheaus, 2008; Bergmann, 2008) while failing to encourage men to share domestic responsibilities, thus perpetuating the undervaluation of care work. One potential concern is that UBI might unintentionally encourage some women to withdraw from the labor market, thereby perpetuating traditional gender roles and divisions of labor (Kangas et al., 2023). This risk is particularly acute in contexts where UBI replaces more comprehensive social security systems, potentially reducing support for care services and shifting the burden of care back onto women.

Additionally, the significant fiscal costs of UBI could limit public investment in other critical areas, including healthcare and childcare, further exacerbating gender inequalities (Williams, 2021). In countries burdened with significant debt, introducing UBI without proper debt alleviation measures could potentially undermine existing social welfare systems. This erosion

might have a disproportionate impact on women, especially those belonging to vulnerable demographics, including single mothers and women living with disabilities (Williams, 2021).

Feminists also express concerns that UBI may fail to address the structural inequalities in paid and unpaid work (Goldblatt, 2020). Instead of challenging existing gender norms, UBI could result in women reducing their paid work hours while men continue in full-time employment, effectively becoming a "housewife's wage" (Robeyns, 2008). These dynamic risks reinforcing stereotypes about women's roles in the home, limiting their economic opportunities and contributing to long-term financial insecurity (Robeyns, 2008). In this context, UBI might act as a temporary fix rather than a transformative solution, diverting attention from more comprehensive approaches needed to tackle structural gender inequalities in both domestic and labour market spheres.

In conclusion, the debate on UBI's gendered impacts is complex and multifaceted, reflecting broader discussions about the intersection of economic policy and gender equality. While UBI offers the potential to empower women by providing financial security and enhancing their agency, there is also a concern that it could inadvertently reinforce traditional gender roles and perpetuate economic dependency. The effectiveness of UBI in promoting gender equality will likely depend on its implementation and the broader social and economic factors within which it operates.

3.4 Intersectionality in UBI

The concept of intersectionality, introduced by Kimberlé Crenshaw (1991), provides a crucial framework for understanding how multiple social categories interact to shape individual experiences and societal structures. In the context of UBI, an intersectional approach allows for a more nuanced understanding of how gender intersects with other factors such as age, education, household composition, income, and urbanization.

3.4.1 Historical Context of Intersectionality in Welfare Movements:

In the UK, the intersection of gender, class, and family structure played a critical role in the Welfare Claimants' Movement, which emerged in the late 1960s (Miller, Yamamori and Zelleke, 2023). Women, particularly those subject to the "cohabitation rule," were disproportionately affected by policies that enforced economic dependence on men. This rule assumed women were financially supported by male partners, leading to intrusive investigations by social security officers. The movement, which advocated for a Guaranteed Adequate Income (GAI), highlighted how social policies could reinforce or challenge traditional gender roles (Dalla Costa and James, 1975). Working-class women saw the GAI as a way to gain economic independence, while middle-class women were more concerned about reinforcing domestic roles (Miller, Yamamori and Zelleke, 2023).

In the U.S., the National Welfare Rights Organization (NWRO) of the 1960s and 70s similarly underscored the intersection of race, gender, and class in discussions around UBI (Nadasen,

2012). Predominantly led by Black women, the NWRO fought for a GAI that would recognize and compensate the unpaid care work typically performed by women, independent of their marital status or employment. The organization argued that economic security through a GAI would allow women to escape exploitative labour and oppressive welfare systems that treated them as dependents rather than as individuals with inherent rights (Miller, Yamamori and Zelleke, 2023). This movement demonstrated the differing needs and perspectives within feminist movements, where middle-class white women prioritized access to employment, while Black and working-class women sought autonomy over their economic and personal lives.

These examples from the UK and US demonstrate that the gender effects of UBI are deeply intertwined with class, race, and family structure. While UBI can potentially reinforce traditional gender roles, especially among middle-class women, it also offers a pathway to economic autonomy for low-income women (Miller, Yamamori and Zelleke, 2023). Therefore, any UBI implementation must consider these intersectional factors to ensure it supports, rather than hinders, gender equality.

3.4.2 Theoretical Frameworks for Intersectional Analysis in UBI

Several theoretical frameworks provide a foundation for conducting an intersectional analysis in Universal Basic Income (UBI) research, each offering distinct perspectives on how UBI might affect various social groups.

Feminist Economics, particularly the work of Folbre (1994), sheds light on the intersection of UBI with household dynamics and unpaid labour. Folbre's research emphasizes the economic value of care work, predominantly performed by women, and suggests that UBI could potentially reshape the distribution of this labour within households. This is particularly important as it highlights how UBI might influence the often-overlooked contributions of care work, creating opportunities for a more equitable distribution of responsibilities within families.

Social Capital Theory, as conceptualized by Putnam (2000), is another crucial framework for understanding the potential impact of UBI on social networks and community engagement. This theory suggests that UBI might influence the formation and maintenance of social connections, potentially impacting community cohesion and individual well-being. However, these effects may vary across different intersectional categories, as UBI could affect various social groups differently in terms of their ability to build and sustain social capital.

Sumi Madhok's (2013) work on 'contextual agency' contributes significantly to the intersectional analysis of UBI, emphasizing the importance of understanding empowerment in diverse socio-political contexts. Madhok argues that agency, and by extension, empowerment, is shaped by specific social, cultural, and political environments. In the context of UBI, this approach suggests that the policy's impact cannot be universally defined; women in different socio-political environments may experience and exercise empowerment

differently. For example, the empowerment effects of UBI might vary between young, urban, educated women and older, rural women with less formal education. Madhok's framework thus calls for a nuanced understanding of UBI's potential to empower women, considering the specific cultural, economic, and political contexts in which they live.

Moreover, Madhok's approach underscores the limitations of applying a Finnish UBI model to other contexts. It highlights the need for context-specific UBI policies that account for local gender norms, economic structures, and social expectations, particularly in countries with different levels of gender equality or welfare state models.

In addition, the Capabilities Approach, developed by Sen (1999) and Nussbaum (2000), offers a complementary perspective by focusing on expanding individuals' real opportunities to pursue valued goals. This framework is particularly relevant for intersectional analysis, as it emphasizes the enhancement of people's freedom to achieve their aspirations, which could be influenced by UBI in different ways across various demographic groups.

3.4.3 Recent Intersectional Studies on UBI

Building on the theoretical frameworks discussed, recent research highlights the necessity of adopting an intersectional approach to evaluate the impacts of UBI. These studies emphasize that UBI's effects are not uniform but vary across different demographic groups based on the interplay of gender, age, education, and household dynamics.

For example, Calasanti's (2010) work on gendered experiences of aging and empowerment underscores the importance of considering age alongside gender when assessing UBI's effects. Her research suggests that UBI may have distinct impacts at different life stages, as the needs, roles, and social expectations for men and women evolve over time. This highlights how UBI could potentially support older adults by providing financial security while also enabling younger generations to balance work and caregiving responsibilities.

Kabeer's (1999) research on women's empowerment further demonstrates the need to account for educational background when analyzing UBI's potential outcomes. Kabeer argues that education plays a critical role in shaping individuals' capacity to exercise agency, and this is particularly relevant when considering how UBI might empower women. Her work suggests that UBI's effectiveness in enhancing empowerment could be contingent upon individuals' educational opportunities and levels, indicating that more educated women may be better positioned to leverage UBI to improve their economic and social standing.

In addition to these gendered dimensions, McKay (2007) explores how UBI could influence traditional gender roles within households. Her research suggests that UBI might encourage men to take on more part-time work and share domestic responsibilities, thus challenging established norms around unpaid care work. This potential shift points to UBI's capacity to promote more flexible work arrangements and foster greater gender equality in both paid and unpaid labour.

Taken together, these studies underscore the importance of considering multiple intersecting factors—such as gender, age, education, and household composition—when analyzing UBI's potential effects. They reveal that UBI's impact on empowerment and social dynamics is likely to be complex and multifaceted, varying significantly across different social groups and contexts. In this way, recent empirical research complements the theoretical perspectives outlined earlier, offering a more nuanced understanding of how UBI might reshape power relations, social roles, and opportunities for empowerment within diverse populations.

3.5 Previous Studies and their pitfalls

While no comprehensive national-level Universal Basic Income (UBI) scheme has yet been implemented, various pilot studies have provided insights into the gendered impacts of such programs. Although there remains a scarcity of gender-sensitive analyses, findings from existing income transfer experiments shed light on the potential implications of UBI for women.

3.5.1 Pilot studies in US, India and Finland

One significant example is the negative income tax experiment carried out in the United States and Canada in the 1970s and 1980s, specifically the Mincome project. These studies revealed a disturbing trend: when offered a guaranteed income, women, particularly those from lower socioeconomic origins, tended to limit their labour-force participation. Many chose to prioritize caregiving and domestic responsibilities instead of pursuing paid employment (Francese & Prady, 2018). The U.S. experiments highlighted a significant decline in female labour supply, particularly among mothers with young children, who opted to remain at home rather than work (Haagh, 2019). Similar trends were observed in Sweden, where lottery winners also reduced their working hours, reinforcing concerns that UBI could inadvertently perpetuate traditional gender roles (Cesarini et al., 2017).

Another promising pilot research was conducted in India's Madhya Pradesh state between 2011 and 2012. In this effort, the Self-Employed Women's Association (SEWA) worked with UNICEF to give low-income families with unconditional cash transfers (Davala et al. 2015). Preliminary findings indicated significant improvements in food sufficiency and increased school attendance, particularly for girls. Women's decision-making power in household spending also grew, reflecting enhanced agency, even though overall labour force participation did not change significantly. Notably, women shifted towards more lucrative self-employment opportunities, thereby increasing their incomes and economic independence (Davala et al., 2015).

In contrast, the Finnish Basic Income Experiment (2017–2018) aimed to assess whether UBI could enhance personal empowerment and employment opportunities for both men and women. Participants reported improvements in confidence regarding their future prospects, economic situations, and ability to manage difficult life situations. However, the results indicated that while UBI improved individuals' confidence, it did not significantly impact

employment rates. Notably, the benefits were equitably distributed across genders, suggesting that in a gender-equal welfare state like Finland, UBI does not function as a gender-specific empowerment tool (Kangas et al., 2023).

Together, these pilot studies highlight the nuanced impacts of UBI on gender dynamics, suggesting both potential benefits and risks that warrant further investigation.

3.5.2 Limitations of the Finland Empowerment Index

Finland, renowned for its commitment to gender equality, was the focus of a previous study on the gendered effects of the Basic Income (BI) pilot, where empowerment was assessed using an index based on Sen and Nussbaum's capabilities approach (Kangas et al., 2023). This index emphasized individuals' ability to lead self-determined lives and participate in society, reflecting Nussbaum's distinction between internal capabilities (related to personal agency) and combined capabilities (enabled by societal structures) (Nussbaum, 2000).

While the index incorporated key dimensions of empowerment by considering confidence in coping with difficult situations, confidence in future prospects, and confidence in the economic situation (Kangas et al., 2023), it did not fully capture the broader aspects that are crucial to Finland's welfare state. The study concluded that UBI did not exhibit gender-specific effects on empowerment. Both male and female UBI recipients reported increased confidence in their future, improved ability to cope with life challenges, and enhanced economic prospects (Kangas et al., 2023). In essence, UBI strengthened recipients' self-confidence, thereby bolstering both their internal and combined capacities. However, this effect was observed equally for men and women, suggesting that UBI can serve as an empowering tool within an already gender-equal welfare state (Kangas et al., 2023).

The index's focus on economic stability, however, overlooked crucial aspects such as life satisfaction, cognitive capabilities, social participation, influence over societal issues, and subjective well-being, which are essential for a comprehensive understanding of empowerment (Richardson, 2018). Moreover, it lacked a gender-specific intersectional analysis, which is necessary to evaluate UBI's impact on gender norms (Wilson, 2011; Batliwala, 2007). By concentrating primarily on individual confidence, the index failed to consider the complex interaction between personal agency and societal structures—particularly in terms of how these factors may differentially affect women. These limitations underscore the need for a more inclusive and expansive measure of empowerment that better reflects Finland's socio-economic and gender dynamics.

4. Methodology and Methods

4.1 Research design and rationale

After reviewing existing studies on Universal Basic Income (UBI) and gender, it is clear that gaps remain in the literature, particularly in how empowerment is conceptualized and measured. Previous research lacked a comprehensive approach to empowerment, which limits the understanding of UBI's potential impact on gender equality. To address these gaps, my investigation adopts a holistic perspective on empowerment, utilizing a nuanced Empowerment Index that assesses seven distinct aspects of empowerment. These aspects are measured using sub-indices, with each sub-index constructed from a few key data points. In total, sixteen data points are analysed, with detailed information about data sources provided in a subsequent section.

To ensure that the Expanded Empowerment Index accurately reflects well-being, I will reverse code responses to certain questions where necessary. For instance, for the question, "How often do you feel lonely?" with responses ranging from 1 (Never) to 6 (Can't say), the coding is reversed so that higher scores consistently indicate higher well-being and empowerment. This allows for a clearer interpretation of the data, where higher scores across all metrics represent greater empowerment.

Each data point is standardized, enabling comparison across different metrics. The mean of the standardized data points is then calculated for each sub-index, representing the various aspects of empowerment. Subsequently, the average of these seven sub-indices forms the "Expanded Empowerment Index." While the process of standardization introduces a methodological weakness—discussed further in the Limitations section—making a comprehensive empowerment index is essential for a detailed analysis, despite potential flaws.

As a final step, I conduct an intersectional analysis, examining how the Expanded Empowerment Index varies across different demographics, such as age, education, income, household category and degree of urbanisation. Although this intersectional analysis is constrained by the available data, particularly in its limited consideration of race and other critical factors, it offers valuable insights. By comparing the results with previous studies, this investigation seeks to determine whether UBI empowers women or perpetuates gender inequality through the lens of the Expanded Empowerment Index.

4.2 Data source: Finnish UBI experiment

The primary data source for this study is the FSD3488 Basic Income Experiment Survey 2018, which includes survey data collected after the Basic Income pilot in Finland. The Finnish Basic Income Experiment, conducted over two years from 2017 to 2018, involved a treatment group of 2,000 randomly selected unemployed individuals, aged 25 to 58, who were receiving

unemployment benefits from the Social Insurance Institution of Finland (Kela) as of the end of 2016 (Jauhiainen et al., 2021).

Finland's unemployment benefit system operates on a dual-tiered structure. Individuals who are members of voluntary unemployment funds qualify for earnings-related benefits, whereas those who are not receive a flat-rate benefit from Kela, unless they fail to meet the eligibility criteria, in which case they may receive social assistance (Kangas and Simanainen, 2021). The 2,000 participants in the treatment group received a UBI of EUR 560 per month for two years, which is equivalent to the net amount of the basic unemployment benefit (Kangas et al., 2023). Unlike traditional unemployment benefits, the UBI was not reduced by earned income, providing a key difference in financial security for recipients. The control group comprised approximately 170,000 unemployed individuals who continued to receive unemployment benefits from Kela (Kangas et al., 2023). Due to the random selection process, the treatment and control groups were comparable at the start of the experiment. Participation in the UBI experiment was mandatory for the treatment group to avoid the selection bias that often affects voluntary experiments (Kangas et al., 2023).

To evaluate the impacts of the UBI experiment, multiple data sources were collected, including administrative records, surveys, interviews, and media analysis (Jauhiainen et al., 2021). This study primarily relies on survey data gathered at the end of 2018 from both the experiment participants and a control group of 5,000 individuals (Kangas et al., 2023). Despite the survey's intention to be comprehensive, the response rates were relatively low, with 31% for the treatment group and 20% for the control group (Kangas et al., 2023). To mitigate potential non-response bias, the data were weighted and compared against the original target group characteristics, revealing no significant disparities (Kangas et al., 2023).

While previous gender studies using this dataset reported on responses from 1,633 participants (586 in the UBI treatment group and 1,047 in the control group), the publicly available data contains responses from 1,597 individuals (569 in the treatment group and 1,028 in the control group). This discrepancy, a reduction of 36 participants (2.20%), is due to some respondents not consenting to have their data transferred to the Finnish Social Science Data Archive (FSD), resulting in their exclusion from the dataset available for public use.

To ensure the validity of our analysis using this publicly available dataset, I conducted a comprehensive comparison with the original study's sample. I performed a chi-square test of independence to examine potential differences in group distribution, yielding $\chi^2(1) = 0.0098$, p = 0.9211. Additionally, I conducted proportion tests for both control (z = -0.1628, p = 0.8707) and treatment groups (z = 0.1628, p = 0.8707). These tests consistently demonstrated no statistically significant differences between the original and public datasets in terms of group distribution or proportions. The maintenance of the control-to-treatment ratio (approximately 64% to 36% in both datasets) further supports the representativeness of the public data.

While the slight reduction in sample size might marginally affect statistical power for detecting very small effect sizes, the overall consistency suggests that analyses conducted on the public

dataset should yield results comparable to those from the original study. This rigorous comparison justifies our use of the publicly available data for subsequent analyses, with the caveat that any divergent findings will be scrutinized in light of this minor sample size difference.

4.3 Variables, measures and justification

The selection of proxies for measuring empowerment in this study is grounded in both theoretical and empirical considerations. Empowerment, as established in the literature, is a multi-dimensional concept encompassing economic, psychological, social, and cognitive elements (Kabeer, 1999; Batliwala, 1994). Given the breadth of these dimensions, no single indicator can capture the full spectrum of empowerment, necessitating the use of multiple proxies to provide a comprehensive measure.

Proxies offer a practical approach to operationalizing empowerment in empirical research, especially in the context of large-scale studies such as those involving Universal Basic Income (UBI) programs. While direct measurements of empowerment may be elusive due to its abstract nature, well-chosen proxies—such as life satisfaction, mental well-being, social trust, and decision-making capacity—allow for the quantification of empowerment-related outcomes that are otherwise difficult to measure. These proxies are not only supported by feminist empowerment theories (Cornwall, 2002; Wilson, 2011) but also reflect established best practices in gender studies and development economics (Folbre, 1994; Sen, 1999).

Furthermore, the selected proxies align with the expanded understanding of empowerment advocated in this study, which integrates both individual agency and structural factors. By capturing key aspects such as psychological well-being, social capital, and material security, the chosen proxies offer a holistic view of how UBI may affect women's empowerment in a gender-specific context. The justification for these proxies is rooted in their ability to reflect the diverse nature of empowerment, thus providing a more accurate assessment of UBI's impacts across different socio-political environments.

Building upon these theoretical foundations, the Expanded Empowerment Index (EEI) is a comprehensive, multidimensional tool developed to measure the full range of women's empowerment within the context of Universal Basic Income (UBI). Unlike conventional indices that primarily emphasize economic empowerment, the EEI adopts a more holistic perspective, integrating economic, psychological, social, and cognitive dimensions. This broad approach is critical to accurately assessing the complex ways in which UBI impacts women's lives, considering empowerment as more than just financial autonomy but also incorporating the capacity to exercise agency and achieve well-being.

Economic proxies such as income stability and financial independence are crucial components of the EEI. These proxies capture the extent to which UBI supports women's financial autonomy, a dimension widely regarded as foundational to empowerment (Kabeer, 1999; Batliwala, 1994). However, the EEI moves beyond economic measures by incorporating

psychological well-being and life satisfaction, thus reflecting a broader, more nuanced understanding of empowerment. Ryff's (1989) Psychological Well-being Theory underpins the inclusion of variables such as self-acceptance, autonomy, and personal growth, acknowledging that true empowerment requires emotional and psychological resilience.

Life satisfaction serves as another critical proxy, aligning with Sen (1999) and Nussbaum's (2000) Capabilities Approach, which emphasizes expanding individuals' opportunities to live a life they have reason to value. This proxy measures whether UBI enhances subjective well-being, capturing the extent to which financial stability translates into a fulfilling and autonomous life. By including life satisfaction, the EEI reflects a growing recognition in empowerment research of the importance of subjective measures in addition to material resources.

Social capital, a dimension grounded in Putnam's (2000) Social Capital Theory, is another key feature of the EEI. Social capital reflects the networks of trust, reciprocity, and community engagement that enable individuals to access collective resources and opportunities. In the context of UBI, this is particularly relevant for women, who often rely on social networks to navigate both formal and informal support systems. By incorporating social capital indicators such as community participation and interpersonal trust, the EEI addresses how UBI can enhance women's social engagement and collective empowerment, thus fostering both individual agency and community-level change.

Cognitive functioning is another essential yet underexplored dimension of empowerment that the EEI seeks to capture. This proxy relates to a woman's ability to make informed decisions and navigate complex systems, an aspect particularly relevant in contexts where negotiating power dynamics requires strategic thinking and cognitive resilience. Cognitive functioning, therefore, provides a more comprehensive view of empowerment, recognizing the intellectual and decision-making capabilities required for exercising agency in both private and public spheres.

Furthermore, the EEI includes measures related to meaningful work and material well-being, informed by Madhok's (2013) concept of contextual agency. Besides financial security, meaningful work provides a sense of fulfilment and self-respect, both of which are crucial for empowerment. Similarly, material well-being ensures that women have the resources to meet their basic needs with dignity. Together, these dimensions capture the socio-economic context in which empowerment occurs, ensuring that the EEI provides a nuanced understanding of how UBI affects women's ability to thrive both economically and personally.

In conclusion, the Expanded Empowerment Index represents an innovative and comprehensive approach to measuring empowerment in the context of UBI. By integrating economic, psychological, social, and cognitive dimensions, the EEI offers a multidimensional view of empowerment that goes beyond financial autonomy as explored in the previous study. It captures the interplay of individual agency, social networks, and broader structural factors

that shape women's empowerment. This holistic approach allows for a robust and nuanced assessment of UBI's impact, providing valuable insights into how financial and social structures intersect to empower or disempower women across diverse socio-political contexts.

Operationalizing Sub Index development:

To ensure consistency and comparability across different measures, I developed the sub-indexes through a systematic process of data conversion and index creation. This involved recoding variables to a standardized 5-point scale and combining relevant data points into meaningful sub-indexes. The following sections outline the procedures for each set of variables and the corresponding indexes.

a) Old Empowerment Index:

The Old Empowerment Index, as referred to in this study, replicates the index used in a previous study. The outcome survey asked respondents about changes in their confidence over the past two years, specifically:

Q12_1: "How confident are you about your future?"

Q12 2: "How confident are you about your economic situation?"

Q12_3: "How confident are you in your ability to handle difficult situations?"

These aspects were rated on a 5-point scale, from 1 (bad) to 5 (good), with an option for "I don't know," which was treated as missing data. Unlike the previous study, where all variables were summed to create an index ranging from 3 to 15, I averaged the three confidence variables, producing an index from 1 to 5. To assess the new index's reliability, I performed a factor analysis, revealing a single factor with robust loadings across all three variables (future: 0.890, economic situation: 0.858, coping: 0.836). The calculated Cronbach's Alpha coefficient of 0.825 suggests strong internal consistency, aligning with the standards outlined in previous research (DeVellis, 2012).

b) Life Satisfaction Index:

Life satisfaction was measured using question 11: "How satisfied are you with your life nowadays?" Respondents rated their current life satisfaction on a 0-10 scale, where 0 indicated "very dissatisfied" and 10 indicated "very satisfied." The option "Can't say" was coded as missing data. I recoded the original 0-10 scale to a 5-point scale, grouping the responses based on frequency distribution: scores of 0, 1, and 2 were recoded as 1 (Very dissatisfied); 3 and 4 as 2 (Dissatisfied); 5 and 6 as 3 (Neutral); 7 as 4 (Satisfied); and 8, 9, and 10 as 5 (Very satisfied). The recoded variable directly formed the Life Satisfaction Index, with higher scores reflecting greater satisfaction.

c) Health and Work Capacity Index:

This index was created by combining two variables:

Q13: "How is your health in general?" (general health)

Q16: "Imagine that your work ability at its best has a value of 10 points. How many points would you give your current work ability?" (work capacity)

For general health, I reversed the original 5-point scale so that 5 represented "Very good" health and 1 represented "Very poor" health. For work capacity, I recoded the original 0-10 scale to a 5-point scale based on frequency distribution: scores of 0, 1, 2, and 3 were recoded as 1 (Not capable); 4 and 5 as 2 (Slightly capable); 6 as 3 (Moderately capable); 7 as 4 (Capable); and 8, 9, and 10 as 5 (Fully capable). The Health and Work Capacity Index was then computed as the mean of these two recoded variables.

d) Mental Well-being Index:

For the mental well-being questions (Q17_1 to Q17_5), which asked "How much of the time during the last 4 weeks have you...":

Q17 1: "Been very nervous?"

Q17_2: "Felt so down in the dumps that nothing could cheer you up?"

Q17 3: "Felt calm and peaceful?"

Q17_4: "Felt downhearted and depressed?"

Q17 5: "Been happy?"

I recoded the responses to ensure that higher scores consistently indicated better mental well-being. For negative items (Q17_1, Q17_2, Q17_4), responses of 1 (All the time) and 2 (Most of the time) were recoded as 1; 3 (A considerable part of the time) as 2; 4 (Some of the time) as 3; 5 (A little of the time) as 4; and 6 (Not at all) as 5. For positive items (Q17_3 and Q17_5), responses were reversed: 1 (All the time) and 2 (Most of the time) were recoded as 5; 3 as 4; 4 as 3; 5 as 2; and 6 as 1. The "Can't say" option (7) was recoded as system missing. The Mental Well-being Index was calculated as the mean of the five recoded variables.

e) Cognitive Functioning Index:

For the cognitive functioning questions:

Q20: "How well do you remember things nowadays?"

Q21: "How well do you learn new things nowadays?"

Q22: "How well can you concentrate on things nowadays?"

I reversed the original 5-point scale so that higher scores indicated better cognitive functioning. Responses of 1 (Very well) were recoded as 5; 2 (Well) as 4; 3 (Satisfactorily) remained unchanged; 4 (Poorly) was recoded as 2; and 5 (Very poorly) as 1. The "Can't say"

option (6) was recoded as system missing. The Cognitive Functioning Index was computed as the mean of these three recoded variables.

f) Social Capital and Trust Index:

This index combined two variables:

Q12_6: "How much do you trust that you will be treated according to the law and receive justice if needed?"

Q12_7: "How much do you feel you have opportunity to influence societal issues?"

Both variables were retained in their original 5-point scale, where higher scores already indicated better outcomes. The "Can't say" option was recoded as system missing. The Social Capital and Trust Index was computed as the mean of these two variables.

g) Meaningful Work and Material Well-being Index:

For questions regarding:

Q12_4: "How meaningful do you feel your work is?"

Q12 5: "How satisfied are you with your material standard of living?"

I maintained the original 5-point scale, where higher scores indicated better outcomes. The "Can't say" option was again recoded as system missing. The Meaningful Work and Material Well-being Index was calculated as the mean of these two variables.

Rationale for Scale Conversion

The decision to convert the 0-10 scales for life satisfaction and work capacity to 5-point scales was driven by a combination of methodological and analytical considerations. A data-driven approach, informed by the frequency distributions of responses, ensured that the recoding accurately captured the underlying data. This conversion facilitated consistency with other 5-point measures in the study, simplifying comparisons and enhancing analytical utility. While reducing the number of response options, the 5-point scale retained meaningful distinctions between different levels of satisfaction or capacity. To maintain data integrity and facilitate interpretation, appropriate variable and value labels were added, and missing values were defined as any value less than or equal to 0.

This comprehensive approach to data conversion and index creation resulted in seven subindexes, all on a consistent 1-5 scale, where higher values consistently indicate better outcomes or higher well-being. These standardized indexes facilitate more meaningful comparisons and analyses across different aspects of well-being in my study, while maintaining the integrity of the original data distributions.

Expanded Empowerment Index -

The final expanded empowerment Index is created by taking the mean of all the 7 sub-indices which was calculated as explained earlier.

COMPUTE ExpandedEmpowermentIndex = MEAN(OldEmpowerment, LifeSatisfaction, HealthWorkCapacity, MentalWellbeing, CognitiveFunctioning, SocialCapitalTrust, MeaningfulWorkMaterialWellbeing).

A factor analysis indicated that all seven variables loaded strongly onto a single factor (OldEmpowerment = .869, LifeSatisfaction = .797, HealthWorkCapacity = .748, MentalWellbeing = .772, CognitiveFunctioning = .690, SocialCapitalTrust = .646, MeaningfulWorkMaterialWellbeing = .772). The Cronbach's Alpha for this index was 0.872, demonstrating a high level of internal consistency (DeVellis 2012).

Explanation of statistical models

For each constructed subindex, I conducted a regression analysis to explore potential correlations between gender and empowerment. The general form of a regression model can be expressed as:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + ... + \beta_k X_k + \epsilon$$

Where:

- Y represents the predicted value of the dependent variable
- β_0 is the y-intercept (the value of Y when all predictors are zero)
- $\beta_1, \beta_2, ..., \beta_k$ are the regression coefficients for each independent variable
- $X_1, X_2, ..., X_k$ are the independent variables (predictors)
- ε is the error term, accounting for unexplained variation in Y

This model allows for the examination of relationships between multiple predictors and the outcome variable, while considering potential confounding factors (Sauro and Lewis, 2016).

The regression model can be expressed in matrix notation as follows:

$$Y = X\beta + \varepsilon$$

In this formulation:

- Y denotes the vector of predicted values for the dependent variable
- X represents the matrix of independent variables, where each row corresponds to an observation and each column to a predictor
- β is a vector containing the regression coefficients [β_0 , β_1 , ..., β_k]
- ε signifies the vector of error terms

This matrix representation encapsulates the multiple linear regression model, accommodating several predictor variables simultaneously (Sauro and Lewis, 2016).

Regression models cannot definitively prove causation, but they can suggest the likelihood that independent variables $(X_1, X_2, ..., X_k)$ affect the dependent variable (Y). When conducting a general linear regression analysis, the resulting P-values for each predictor variable offer insights into the potential strength and relevance of the relationships between these predictors and the outcome variable. These P-values serve as indicators of statistical significance, helping to identify which independent variables may have a meaningful association with the dependent variable under investigation. In the general linear regression model, each independent variable (X1, X2,....,Xk) has its own P-value. If the P-value for a particular predictor is below 0.05, it suggests that the predictor (In this case, Gender) significantly influences the dependent variable (Y) and (Expanded Empower Index) (De Bragança Pereira and Wechsler, 1993). This means that there is a statistically significant relationship between the predictor and the outcome, holding other variables constant.

If, however, the P-value for a predictor is greater than 0.05, this suggests that the predictor does not have a statistically significant effect on the dependent variable for the group studied. In general linear regression, this interpretation applies to each independent variable, allowing us to assess the significance of multiple predictors simultaneously, helping to understand which factors have the strongest impact on the dependent variable.

Exploring Intersectionality through Interaction Terms:

The next part of the analysis explores intersectionality. As stated in the literature, gender cannot be treated in isolation, as multiple intersecting factors—such as age, race, region, and other demographic factors—affect gender outcomes. Using pilot data, I aim to examine whether there are any intersectional effects of treatment and gender with age, education, income level, household category and degree of urbanization.

In the context of exploring intersectionality, I use interaction terms to investigate how the combined influence of two or three variables affects the dependent variable. Intersectionality examines how various social categories (e.g., gender, age, education, Income level, household category, urbanization) intersect to create different experiences and outcomes. By including interaction terms in the model, I assess whether the joint effect of two variables (e.g., gender and age) and three variable (e.g Treatment, gender, age) has a different impact on the dependent variable (Expanded Empowerment Index) than each variable does individually.

For instance, an interaction term $X1 \times X2 \times X3$ would represent the combined effect of X1 (e.g., treatment), X2 (e.g., gender) and X3 (e.g., age) on Y (e.g., Expanded Empowerment Index). If the interaction term has a p-value below 0.05, it suggests that the combined effect of these variables significantly influences the outcome. This indicates that the impact of one variable on Y depends on the level of the other variable, providing insight into how intersectional identities influence outcomes.

For example, if I am examining the relationship between gender (X2) and age (X3) of the treatment group (X1) on the Expanded Empowerment Index (Y), a significant interaction term

would suggest that the effect of age of the treatment group on empowerment differs for men and women. This analysis helps to understand how different social identities and categories intersect to produce unique effects, which would be overlooked if each variable were considered in isolation.

Incorporating interaction terms into the regression model enables a more nuanced examination of the relationships among predictors. This approach provides insights into how variables may influence each other's effects on the outcome, offering a deeper understanding of potential intersectional dynamics within the study population. By considering these interactions, we can uncover more complex patterns and relationships that might otherwise be overlooked in simpler models.

To examine these intersectional effects on the Expanded Empowerment Index, I employed a series of General Linear Models (GLM) using SPSS. This approach allowed us to investigate how various demographic factors interact with the treatment effect while controlling for relevant covariates. The general form of the model can be expressed as:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 (X_1 X_2) + \beta_5 (X_1 X_3) + \beta_6 (X_2 X_3) + \beta_7 (X_1 X_2 * X_3) + \beta_8 Z_1 + \beta_9 Z_2 + \epsilon$$

Where:

- Y = Expanded Empowerment Index
- X₁ = Treatment (test or control group)
- X₂ = Gender
- X_3 = Demographic factor (e.g., age group, education level, household composition, income level, or urbanization)
- Z_1 , Z_2 = Covariates (e.g., age and ability to work)
- ε = Error term

I conducted five separate analyses, each focusing on a different demographic factor (X3) while keeping gender and treatment as consistent variables across all models. For example, one analysis examined the intersection of gender, treatment, and age group, while another looked at gender, treatment, and education level.

The GLM procedure in SPSS was utilized with the following general syntax structure:

GLM ExpandedEmpowermentIndex BY tyyppi t1 X3 WITH Z1 Z2

```
/DESIGN = tyyppi t1 X3 tyyppi*t1 tyyppi*X3 t1*X3 tyyppi*t1*X3 Z1 Z2

/PRINT = PARAMETER

/EMMEANS = TABLES(tyyppi*t1*X3) COMPARE(tyyppi) COMPARE(t1) COMPARE(X3)

/EMMEANS = TABLES(t1*X3) COMPARE(t1) COMPARE(X3).
```

This approach allowed me to examine main effects, two-way interactions, and three-way interactions between treatment, gender, and the specific demographic factor under

consideration. I also obtained estimated marginal means and pairwise comparisons to further elucidate the nature of these intersectional effects.

By conducting these analyses, I was able to explore how the impact of the empowerment program varied across different intersections of gender and other demographic characteristics, providing a nuanced understanding of the program's effectiveness for diverse subgroups within the population.

This methodology aligns with intersectional quantitative approaches advocated by scholars such as Else-Quest and Hyde (2016) and Bauer (2014), who emphasize the importance of examining multiple, intersecting social categories in statistical analyses to reveal complex patterns of inequality and social experience.

In my analysis, I employed F-tests in addition to p-value significance to assess the overall significance of the regression models. The F-value, representing the ratio of explained to unexplained variance, was used to determine whether the models account for a statistically significant portion of the variance in the dependent variable (Cohen, 1988). A larger F-value, coupled with a p-value below the conventional threshold of 0.05, was interpreted as evidence that the model explains more variance than would be expected by chance alone.

4.4 Limitations

This research faces potential constraints that can be broadly categorized as external and internal. External limitations stem from factors beyond my control and may require intervention from larger organizations or agencies involved in UBI research to fully address. Internal limitations, conversely, are rooted in the chosen methodology and present opportunities for future studies while also serving as cautionary points for subsequent research. While the distinction between external and internal limitations is not absolute—as internal challenges often result from external circumstances—it provides a helpful framework for analysis. The following sections will outline anticipated limitations, which will be thoroughly examined and addressed in light of the study's results. This approach allows for a comprehensive review of the study's constraints, facilitating a more nuanced understanding of the research findings and their implications for future investigations in this field.

External Limitations:

The four main external constraints of this study include (a) the lack of comprehensive data, (b) the accuracy of collected metrics (Self-Reported Data), (c) contextual specificity, and (d) the time frame of the data collection.

Internal Limitations:

The internal limitations of this study are (e) composite index construction using mean which oversimplifies the complexity of empowerment (f) Scale Conversion (g) Lack of Qualitative Data and Analysis (h) limited Statistical Power for multiple categories for some intersectional analyses.

5. Results and discussion

After sourcing the Finland Pilot study outcome survey data, I converted data points into 5-point scales as described in the methodology section. I calculated individual averages for each of the seven sub-indices, then averaged these to generate the "Expanded Empowerment Index". I then ran General Linear Regression models for both groups against their sub-indices and the overall index. Below is a summary of the results.

5.1 No gender differences

Analysis of the expanded Empowerment Index reveals a statistically significant main effect for gender (t1), with a p-value of 0.002, which falls below the conventional threshold of 0.05. This result indicates a notable disparity in empowerment levels between genders when considering the overall index. The observed difference suggests that gender plays a substantial role in influencing empowerment outcomes as measured by this comprehensive index. The treatment effect (tyyppi) is also significant (p < 0.001), indicating that the program had an overall effect on empowerment. But the **interaction term, treatment and gender didn't show any significance.** The Interaction effect between treatment and gender (tyyppi * t1), the p-value is 0.890, which is not statistically significant (p > 0.05). This indicates that the effect of the UBI Program (treatment) does not significantly differ between genders.

The parameter estimates for [t1=1] (female) is 0.087, but it's not significant (p = 0.070). This suggests a slight tendency for females to have higher empowerment scores, but it's not statistically significant at the 0.05 level.

Variable	Old Empowerment Index (As per Prev Study) (X)	Old Empowerment Index (Public data) (Y)	Old Empowerment Index (Mean) (A)	Life Satisfaction (B)	Health Work Capacity (C)	Mental Wellbeing (D)	Cognitive Functioning (E)	Social Capital Trust (F)	Meaningful Work and Material Wellbeing Index (G)	Expanded Empowerment Index = (A-G mean)
Treatment (Tyyppi)	0	0	0	0	0.652	0	0	0	0	0
Gender (t1)	0.004	0.011	0.006	0	0.486	0.644	0.612	0.136	0.025	0.002
Treatment (tyyppi) * Gender (t1)	0.769	0.89	0.863	0.447	0.896	0.709	0.52	0.377	0.427	0.89
Age (t2)	0.002	0.023	0.015	0.876	0	0	0.07	0	0.001	0.079
Education (t4)	0.134	0.613	0.56	0.352	0.008	0.242	0	0.043	0.645	0.545
Adjusted R ²	0.256	0.256	0.245	0.258	0.903	0.244	0.249	0.134	0.241	0.5

Table 1: P-values for Main Effects and Interactions across Empowerment Indices and Sub-Indices

Note:

(X) Old Empowerment Index (As per Prev Study): Data replicated from the previous study (Kangas et al., 2023)

(A) Old Empowerment Index (Mean): New index created for this study by taking the mean of the three variables.

⁽Y) Old Empowerment Index (Public data): Index created using the same methodology as the previous study, summing the variables. This demonstrates that results remain consistent despite missing some responses in the public data (Adjusted R^2 is 0.256 for both X and Y).

Based on this analysis, the expanded empowerment index does not show a significant gender difference for those who participated in the program. While there is an overall gender difference in empowerment (main effect of gender), the lack of a significant interaction effect suggests that the program's impact on empowerment was similar for both males and females.

In other words, the program appears to have been equally effective in improving empowerment for both genders, without favouring one gender over the other. The gender difference in empowerment seems to exist independently of the program's effects.

The results of our analysis align with the research conducted by Kangas et al. (2023), which utilized an empowerment index comprising three variables: confidence in coping with difficult situations, confidence in the future, and confidence in one's economic situation. Their study found no significant interaction between gender and treatment. Our expanded index yielded similar outcomes, suggesting that Basic Income may serve as an empowerment tool for recipients in general, rather than specifically addressing gender disparities in an already established gender-equal welfare state like Finland (Kangas et al., 2023). While BI does not appear to be a panacea for enhancing gender equality in societies similar to Finland, its impact may be more pronounced in developing nations or countries with more significant gender inequalities. In the context of a highly egalitarian Nordic country, a singular modification to the benefit system seems insufficient to substantially affect gender dynamics (Kangas et al., 2023).

It's worth noting that this analysis has a high adjusted R-squared value of 0.500, indicating that the model explains a substantial portion of the variance in the expanded empowerment index—approximately 50%. In social sciences, an adjusted R-squared of 0.500 is considered strong, as human behaviour and social phenomena are inherently complex and difficult to predict perfectly (Cohen, 1988; Hair et al., 2010).

Compared to the previous study, where the old empowerment index had an adjusted R-squared of 0.256, the expanded empowerment index represents a significant improvement, explaining about twice as much variance. The increase from 0.256 to 0.500 suggests that the expanded index captures more relevant factors influencing empowerment, providing better predictive power (Field, 2013). This improvement indicates that the additional variables or changes incorporated in the expanded index contribute meaningfully to explaining variations in empowerment scores (Tabachnick & Fidell, 2013).

5.2 Complex Intersectional Effects

For the intersectional analysis, five intersections were examined along with gender: age, education, household composition, income level, and degree of urbanization. This approach aligns with Crenshaw's (1991) foundational work on intersectionality and extends it to Basic Income research. The findings are summarized in a table and explained individually, capturing main effects, interaction effects, and identifying groups with the highest and lowest empowerment scores.

Intersectional Factor	Corrected Model	Main Effect (Gender)	Main Effect (Factor)	Two-way Interaction (Gender* Factor)	Three-way Interaction (Treatment * Gender * Factor)	Highest Empowerment Group	Lowest Empowerment Group	Significant Differences
Age	F = 76.89, p < 0.001	F = 6.67, p = .010	F = 1.513, p = .196	F = 1.554, p = .184	F = 1.413, p = .227	Females 35-44 (M = 3.656)	Females 55+ (M = 3.468)	Females: 35- 44 vs 55+
Education	F = 65.097, p < 0.001	F = 2.80, p = .094	F = 0.795, p = .553	F = 2.323, p = .041	F = .769, p = .572	Females with vocational education	Females with polytechnic education	Females: Vocational vs Polytechnic
Household Composition	F = 91.967, p < 0.001	F = 5.33, p = .021	F = 5.846, p < .001	F = 0.758, p = .518	F = 2.170, p = .090	Females in all- adult households (M = 3.745)	Females in one- person households (M = 3.535)	Both genders: One-person vs With children
Income	F = 76.045, p < 0.001	F = 3.78, p = .052	F = 20.22, p < .001	F = 0.736, p = .597	F = 0.307, p = .873	Males 50,001+ euros/year (M = 3.987)	Males Under 10,001 euros/year (M = 3.319)	Both genders: Higher vs Lower income
Urbanization	F = 121.24, p < 0.001	F = 1.078, p = .299	F = 0.952, p = .386	F = 1.472, p = .230	F = 0.490, p = .613	Females in semi- urban areas (M = 3.605)	Females in rural areas (M = 3.468)	No significant differences

Table 2: Summary of Key Findings from Intersectional Analyses

The intersectional analyses examined the impact of UBI on empowerment across these five dimensions. All models were statistically significant, explaining approximately 50-53% of the variance in empowerment scores. The results revealed complex patterns of intersectionality in UBI's impact on empowerment.

Age and education demonstrated gender-specific patterns. While the main effect of age was not significant, women aged 35-44 in the treatment group had the highest empowerment scores, reflecting Calasanti's (2010) insights on gendered experiences of aging. Education exhibited a significant interaction with gender, supporting Kabeer's (1999) argument about the nuanced role of education in women's empowerment. This suggests that UBI's effects may be more pronounced for educated women, highlighting education as a critical factor in facilitating empowerment.

Income had a significant effect, with higher income correlating with increased empowerment, particularly for men. This supports Sen's (1999) capability approach, emphasizing that income translates differently into empowerment for men and women. Interestingly, urbanization showed no significant effect, challenging assumptions that rural-urban differences significantly shape empowerment outcomes (Pike et al., 2006). This suggests that UBI may have similar impacts on empowerment regardless of the recipient's location.

The key focus for the intersectional analysis is the three-way interaction. Out of the five three-way interactions (treatment * gender * factor), four were not significant, suggesting that UBI's impact on empowerment is relatively consistent across most intersectional categories. However, the marginally significant interaction for household composition, with a relatively high F-value (F = 2.170, p = .090), indicates that the model explains more variance than would be expected by chance, warranting further exploration. These findings echo broader debates in the literature about UBI's potential to either reinforce or challenge traditional gender roles. As observed in studies from the UK and US, UBI's gender effects are deeply intertwined with

class, race, and family dynamics. For middle-class women, UBI could potentially reinforce traditional caregiving roles by enabling them to reduce or leave paid employment. Conversely, for low-income women, UBI offers a pathway to economic autonomy, alleviating the financial pressures that often bind them to low-wage or precarious work (Folbre, 1994).

In our study, women in all-adult households exhibited higher empowerment scores, while men scored higher in households with children. This pattern may reflect the interplay between UBI, caregiving responsibilities, and empowerment. These findings partly support Van Parijs and Vanderborght's (2017) argument that UBI could positively influence intra-household financial distribution, empowering women who typically bear the burden of unpaid care work (Livingston, 2018). Van Parijs emphasizes that UBI can promote gender justice by providing financial independence to those engaged in domestic labour.

Higher empowerment scores for men in households with children also lend partial support to McKay's (2007) view that UBI could encourage men to engage more in part-time work and domestic responsibilities. This shift could lead to a more equitable distribution of care work within households, potentially explaining the increased empowerment scores for men in these contexts. These findings align with Kangas (2023) analysis of UBI in Finland, where men, particularly, chose part-time work over full-time employment or unemployment under the UBI scheme.

However, as Lenczewska (2021) notes in her analysis of UBI and gender justice, the effects of UBI on household gender dynamics may be more complex than initially anticipated. She argues that while UBI might offer financial independence, it could also inadvertently reinforce traditional gender roles if broader societal and policy changes are not enacted.

The higher empowerment scores for women in all-adult households can be interpreted through Sumi Madhok's (2013) rethinking of agency, where UBI may afford women greater financial autonomy and decision-making power, especially when freed from caregiving expectations often associated with households that include children.

These findings contribute to the ongoing debate about UBI's potential to address gender inequalities. While they do not definitively establish UBI as a tool for achieving gender equality in welfare states like Finland, they highlight the complex, context-dependent nature of UBI's effects. The intersection of gender and household composition, in particular, requires deeper investigation to fully understand UBI's impact on empowerment across diverse demographic groups. This nuanced understanding is crucial for developing UBI policies that more effectively promote empowerment within varied household structures and gender dynamics.

Finally, these intersectional analyses underscore the complexity of empowerment as a concept and the importance of intersectional approaches in UBI research (Collins, 2015; Cho et al., 2013). While UBI generally increases empowerment across demographic groups, its effects may vary subtly across intersections of gender, age, education, household composition,

and income. This supports Robeyns' (2001) argument that UBI's effects differ across social groups, although the differences may be less pronounced than initially hypothesized.

In conclusion, the combined results of both the general and intersectional analyses reveal that while Basic Income has a significant overall impact on empowerment, its effects are nuanced and complex. The lack of significant gender-treatment interaction in the Expanded Empowerment Index suggests that UBI's effect on empowerment is similar for men and women in Finland's highly egalitarian welfare state. However, the significant findings of gender-specific patterns in age, education, and household composition indicate that UBI interacts differently with these factors, influencing empowerment outcomes across various demographic groups.

In particular, the marginal significance of household composition and the higher empowerment scores for women in all-adult households and men in households with children highlight how caregiving responsibilities and family structure play a crucial role in shaping UBI's impact. This suggests that UBI's potential to alter traditional gender roles and promote more equitable caregiving arrangements, as theorized by McKay and Van Parijs, may only be partially realized and depends on broader societal contexts.

The improved adjusted R-squared in the Expanded Empowerment Index model (0.500), compared to the previous study's index (0.256), further underscores the relevance of these additional factors in capturing a fuller picture of empowerment. The consistency of UBI's effects across most intersectional categories suggests that while UBI can broadly enhance empowerment, its ability to address deeper structural inequalities, such as gender dynamics and household compositions, remains context-dependent and requires further exploration.

Ultimately, these findings reinforce the value of intersectional analysis in understanding the social impact of UBI and suggest that policies designed to foster empowerment must consider the multifaceted interactions of gender, age, education, income, and household composition to fully realize their potential.

5.3 Reflection on Limitations

Revisiting the constraints outlined in the Methodology section, it's evident that both external and internal factors have influenced this study's outcomes. In the following section, I propose several suggestions for future researchers aiming to improve on this work. These include exploring data across multiple UBI pilots globally, using alternative methods for composite index creation to avoid oversimplification, and refining the scale conversion process to minimize distortions in interpretation. Additionally, addressing the limitations of statistical power and incorporating qualitative data would offer a more nuanced understanding of empowerment outcomes. This study further supports the broader call for improved gender-disaggregated and intersectional data collection and availability at various levels, which is essential for more comprehensive analyses of UBI programs across diverse contexts.

External:

The four major limitations of this study are: the absence of comprehensive data, the accuracy of collected metrics, contextual specificity, and the time frame.

Absence of Comprehensive Data: The most significant external limitation is the lack of data, which manifests in two keyways: (1) the study's focus being limited to Finland, and (2) the inability to include all relevant empowerment indicators in the analysis.

Firstly, gender-disaggregated data from UBI pilots were unavailable, which constrained the study to Finland and prevented comparative analysis with other UBI pilots conducted across different nations. Despite over 50 UBI pilots being run globally by various organizations, the data from these pilots are not openly accessible. Finland is an exception, where researchers can register to access data for their theses through the Aila Data Service, maintained by the Finnish Social Science Data Archive (FSD).

Despite extensive follow-up efforts, the research team conducting the pilot in Kenya reported that their final report remains unpublished, and they were unable to share the associated data. In the U.S., portals such as The Guaranteed Income Pilots Dashboard provided basic program details but did not offer gender-disaggregated data from the outcome surveys. Attempts to contact relevant individuals through emails and outreach were largely unresponsive or unfruitful. I also attempted to obtain data from pilots in Ontario, Canada, and India, but the data from these pilots was either outdated or unavailable due to policy restrictions. I was only able to access published reports for these two pilots. Extensive outreach to stakeholders involved in UBI, as well as UBI forums and groups on LinkedIn and Reddit, also revealed that gender-disaggregated data was either unavailable or insufficient for my analysis. As a result, the study primarily relied on data from Finland.

Secondly, even in the Finnish dataset, not all aspects of empowerment were covered, as the data was not primarily collected for empowerment analysis. Key factors such as race and ethnicity were missing from the data, which are critical for conducting an intersectionality analysis of the program. The study would be significantly improved if future pilots included additional demographic features and a broader range of empowerment aspects in their data collection. Additionally, this study highlights the need for UBI stakeholders to collaborate and make pilot data more openly accessible, beyond just publishing reports, to facilitate further analysis and discussion.

In addition to the lack of data, concerns also arise regarding the validity and accuracy of the Finland pilot data. Firstly, the Finland pilot data was self-reported, and response rates were relatively low, with 31% for the treatment group and 20% for the control group. Self-reported measures, such as life satisfaction, are often negatively skewed, as most people tend to report being reasonably happy with their lives (Pallant, 2020). In contrast, the general population's clinical measurements of anxiety and depression are typically favourably biassed, with most respondents reporting comparatively low levels of these disorders symptoms (Pallant, 2020).

I have elaborated on the process of index creation and the limitations of the scales used in the section on internal limitations. The subjective nature of self-reporting, coupled with the general issues in calculating such indices, highlights how this study is reliant on data with low response rates and potential inaccuracies. These limitations underscore the need to interpret the findings with caution, as they may reflect biases inherent in the data collection process.

The final two external limitations of this study concern contextual specificity and the time frame. First, the study's findings are likely to be highly specific to the Finnish context, limiting their generalizability to other regions or welfare states. Finland's unique socio-economic and cultural conditions, as well as its robust welfare system, may mean that Universal Basic Income (UBI) programs in other countries with different institutional frameworks would produce varied outcomes. This specificity is compounded by the fact that the program participants were exclusively unemployed individuals, further narrowing the scope of the study's applicability. Given that the unemployed may experience empowerment differently from other groups, such as part-time workers or those marginally attached to the labour market, the findings cannot be readily generalized to the wider population (Standing, 2017).

Secondly, the study's time frame poses a significant limitation. The duration of the Finland pilot study may not be sufficient to capture the long-term impacts of UBI. Data was collected at a single time point—at the end of the pilot program—which restricts insights into how UBI affects individuals over time. Longitudinal studies, which track participants over extended periods, are more effective in observing the evolving effects of UBI, particularly in areas such as mental health, financial stability, and social capital (Widerquist, 2019). Without long-term data, it remains unclear whether the empowerment effects observed in this study would persist or change as participants adapt to the program over time. This limitation underscores the need for extended follow-up studies to better assess UBI's sustained impact on empowerment and other socio-economic factors.

Internal Limitations:

Several internal limitations were identified in this study, specifically related to the construction of the composite index, challenges in scale conversion, the absence of qualitative data, and limitations in statistical power. Each is discussed in detail below:

Composite Index Construction:

The Expanded Empowerment Index was constructed by averaging seven sub-indices, each derived from one to three questions, which were converted to a five-point scale for standardization. Although reliability and factor analyses were conducted, this approach may oversimplify the complexity of empowerment, which is inherently multi-dimensional (Kabeer, 1999). Assigning equal weight to all seven sub-indices may not reflect the varying importance that different empowerment dimensions hold for different individuals (Narayan, 2005). As Alkire and Foster (2011) have pointed out, composite indices may mask critical nuances in multidimensional concepts like empowerment. The choice to apply equal weighting, though

common, might not appropriately account for the relative significance of the individual sub-indices (Decancq & Lugo, 2013). Additionally, coding responses of "can't say" as systemmissing values can distort the overall score, as these responses are excluded from the calculation, potentially introducing bias in the final index (Allison, 2001).

Scale Conversion:

Converting different data points, such as using a 0-10 scale for life satisfaction and work capacity to a five-point scale, could distort the interpretation of results. As Dawes (2008) noted, such scale transformations may influence the distribution of responses and alter the relationships between variables. This limitation affects the validity of comparisons across the different empowerment dimensions, as the scales may not be fully comparable. The risk of introducing unintended distortions through such conversions is a challenge when working with data from different instruments.

Lack of Qualitative Data and Analysis:

The study relied solely on quantitative data, which limits the depth of understanding regarding participants' lived experiences and perspectives. Empowerment, particularly in the dimensions of social capital, trust, and meaningful work, could benefit from qualitative insights such as interviews or focus groups (Patton, 2002). Without qualitative data, critical contextual factors that shape individual empowerment experiences may be overlooked, limiting the study's interpretative depth. As Creswell and Plano Clark (2017) argue, mixed-methods approaches that integrate qualitative and quantitative data can offer a more comprehensive understanding of complex social phenomena such as empowerment. The absence of qualitative data restricts the study from exploring how UBI affected participants' personal experiences and agency, which are essential components of empowerment.

Statistical Power:

The study's statistical power may have been limited, particularly in the intersectional analyses involving multiple categories such as gender, income level, and urbanization. Intersectional analyses often face challenges due to small sample sizes in specific subgroups, making it difficult to detect significant effects (McCall, 2005). For example, the income category of €50,001 or more per year had only ten respondents, with no female participants from the treatment group. Such imbalances can affect the reliability of statistical estimates for incomebased analyses (Tabachnick & Fidell, 2013). Insufficient statistical power in these cases increases the likelihood of Type II errors, where significant effects may go undetected, particularly in underrepresented subgroups (Button et al., 2013). This limitation could result in an underestimation of UBI's true impact on empowerment, especially when examining interactions between gender and other demographic variables.

Addressing these internal limitations can enhance the robustness of future research in this area. Incorporating qualitative methods, addressing issues related to index construction and

scale conversion, and improving statistical power through larger sample sizes will be crucial in providing a more comprehensive understanding of the long-term and nuanced effects of UBI on empowerment across different demographic groups.

6. Conclusion

This study employed an intersectional approach, grounded in various feminist theories of empowerment, to investigate the relationship between Basic Income and gender empowerment in Finland. By constructing an expanded empowerment index that encompasses multiple dimensions of well-being and agency, we aimed to provide a more comprehensive assessment of UBI's impact on empowerment across diverse demographic groups.

Our findings reveal that UBI's effects on empowerment are complex and nuanced. The lack of significant gender-treatment interaction in the Expanded Empowerment Index suggests that UBI's impact on empowerment is relatively uniform across genders in Finland's egalitarian welfare state. This aligns with previous research by Kangas et al., indicating that UBI may be a tool for empowerment that affects both men and women similarly in such contexts.

However, the intersectional analysis unveiled subtle variations in empowerment outcomes across different demographic intersections. Notably, the marginally significant three-way interaction between treatment, gender, and household composition (F = 2.170, p = .090) suggests that UBI's impact may vary depending on family structure. This finding partially supports theories proposed by McKay (2007) and Van Parijs (2014) regarding UBI's potential to alter traditional gender roles and promote more equitable caregiving arrangements.

The improved explanatory power of our Expanded Empowerment Index (Adjusted R-squared = 0.500) compared to the previous three-variable index (Adjusted R-squared = 0.256) underscores the value of a more comprehensive approach to measuring empowerment. This aligns with feminist critiques of overly simplistic empowerment metrics (Wilson, 2011) and supports the need for multidimensional assessments of well-being and agency (Sen, 1999; Nussbaum, 2000).

While our study does not definitively establish UBI as a tool for achieving gender equality, it highlights the importance of considering intersectional factors when designing and evaluating such policies. The findings suggest that UBI's effectiveness in promoting empowerment may depend on various contextual factors, including age, education, household composition, and income level.

These results have important implications for policy design and future research. They suggest that while UBI may have broad empowering effects, its impact is not uniform across all demographic groups. Future UBI policies should consider these nuanced effects and

potentially incorporate targeted interventions to address specific needs of different demographic groups.

Our study also underscores the need for more comprehensive and accessible data on UBI pilots globally. The limitations we encountered, particularly in accessing gender-disaggregated data from various UBI experiments, highlight the importance of improved data collection and sharing practices in this field.

In conclusion, while UBI shows promise as a tool for empowerment, its effects are complex and context dependent. Future research should focus on longitudinal studies, mixed-method approaches, and more diverse contexts to fully understand UBI's potential in promoting gender equality and empowerment across different societal settings.

7. References

Alkire, S. and Foster, J. (2011). Counting and multidimensional poverty measurement. *Journal of Public Economics*, 95(7-8), pp.476–487. doi:https://doi.org/10.1016/j.jpubeco.2010.11.006.

Allison, P. (2002). *Missing Data*. 2455 Teller Road, Thousand Oaks California 91320 United States of America: SAGE Publications, Inc. doi:https://doi.org/10.4135/9781412985079.

Batliwala, S. (1994). *The meaning of women's empowerment : new concepts from action*. Boston, Massachusetts, Harvard University, Harvard Center for Population and Development Studies.

Batliwala, S. (2007). Taking the power out of empowerment – an experiential account. *Development in Practice*, 17(4-5), pp.557–565. doi:https://doi.org/10.1080/09614520701469559.

Bauer, G.R. (2014). Incorporating intersectionality theory into population health research methodology: Challenges and the potential to advance health equity. *Social Science & Medicine*, 110(110), pp.10–17. doi:https://doi.org/10.1016/j.socscimed.2014.03.022.

Bergmann, B.R. (2008). Basic Income Grants or the Welfare State: Which Better Promotes Gender Equality? *Basic Income Studies*, 3(3). doi:https://doi.org/10.2202/1932-0183.1128.

Bina Agarwal (1994). *A field of one's own : gender and land rights in South Asia*. Cambridge University Press.

Button, K.S., Ioannidis, J.P.A., Mokrysz, C., Nosek, B.A., Flint, J., Robinson, E.S.J. and Munafò, M.R. (2013). Power failure: Why small sample size undermines the reliability of neuroscience. *Nature Reviews Neuroscience*, [online] 14(5), pp.365–376. doi:https://doi.org/10.1038/nrn3475.

Calasanti, T. (2010). Gender Relations and Applied Research on Aging. *The Gerontologist*, 50(6), pp.720–734. doi:https://doi.org/10.1093/geront/gnq085.

Cesarini, D., Lindqvist, E., Notowidigdo, M.J. and Östling, R. (2017). The Effect of Wealth on Individual and Household Labor Supply: Evidence from Swedish Lotteries. *American Economic Review*, 107(12), pp.3917–3946. doi:https://doi.org/10.1257/aer.20151589.

Cho, S., Crenshaw, K.W. and McCall, L. (2013). Toward a Field of Intersectionality Studies: Theory, Applications, and Praxis. *Signs: Journal of Women in Culture and Society*, [online] 38(4), pp.785–810. Available at:

https://www.journals.uchicago.edu/doi/abs/10.1086/669608.

Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed.). *Journal of the American Statistical Association*, 84(408). doi:https://doi.org/10.2307/2290095.

Collins, P.H. (2015). Intersectionality's Definitional Dilemmas. *Annual Review of Sociology*, 41(1), pp.1–20.

Cornwall, A. (2002). *Making spaces, changing places: situating participation in development*. [online] Available at:

https://opendocs.ids.ac.uk/articles/report/Making%E2%82%9Bpaces%3Csub%3Ec%3C/sub%3Ehanging%E2%82%9Alaces%E2%82%9Bituating%E2%82%9Aarticipation%3Csub%3Ei%3C/sub%3En%3Csub%3Ed%3C/sub%3Eevelopment/26440999.

Cornwall, A. (2016). Women's Empowerment: What Works? *Journal of International Development*, 28(3), pp.342–359. doi:https://doi.org/10.1002/jid.3210.

Cornwall, A. and Edwards, J. (2014). *Feminisms, empowerment and development : changing women's lives*. London: Zed Books.

Cox, E. (2019). Feminist Perspectives on Basic Income. *Implementing a Basic Income in Australia*, pp.69–85. doi:https://doi.org/10.1007/978-3-030-14378-7_4.

Crenshaw, K.W. (1991). *Race, Gender, and Sexual Harassment*. [online] Scholarship Archive. Available at: https://scholarship.law.columbia.edu/faculty_scholarship/2929 [Accessed 29 Sep. 2024].

Creswell, J.W. and Plano Clark, V.L. (2017). *Designing and conducting mixed methods research*. Los Angeles: Sage.

Dalla Costa, M. and James, S. (1975). *The Power of Women and the Subversion of the Community*. Falling Wall Press.

Davala, S., Renana Jhabvala, Standing, G. and Soumya Kapoor Mehta (2015). *Basic Income*. Bloomsbury Publishing.

Dawes, J. (2008). Do Data Characteristics Change According to the Number of Scale Points Used? An Experiment Using 5-Point, 7-Point and 10-Point Scales. *International Journal of Market Research*, 50(1), pp.61–104. doi:https://doi.org/10.1177/147078530805000106.

de Bragança Pereira, C.A. and Wechsler, S. (1993). ON THE CONCEPT OF P-VALUE. *Brazilian Journal of Probability and Statistics*, [online] 7(2), pp.159–177. Available at: https://www.jstor.org/stable/43600839 [Accessed 29 Sep. 2024].

De Wispelaere, J. (2015). The Struggle for Strategy: On the Politics of the Basic Income Proposal. *Politics*, 36(2), pp.131–141. doi:https://doi.org/10.1111/1467-9256.12102.

De Wispelaere, J. (2017). Basic income – have austerity's chickens come home to roost? *ISRF Bulletin*, [online] (13). Available at: https://issuu.com/isrf/docs/isrf_bulletin_issue_xiii [Accessed 29 Sep. 2024].

De Wispelaere, J. and Martinelli, L. (2017). A new universalism? Varieties of basic income and welfare state reform. ESPAnet Conference, Lisbon, September 14–16.

Decancq, K. and Lugo, M.A. (2013). Weights in Multidimensional Indices of Wellbeing: An Overview. *Econometric Reviews*, 32(1), pp.7–34. doi:https://doi.org/10.1080/07474938.2012.690641.

Devellis, R.F. (2012). Scale development: theory and applications. Thousand Oaks: Sage.

Else-Quest, N.M. and Hyde, J.S. (2016). Intersectionality in Quantitative Psychological Research. *Psychology of Women Quarterly*, 40(3), pp.319–336. doi:https://doi.org/10.1177/0361684316647953.

Field, A. (2013). Discovering Statistics Using IBM SPSS Statistics. *Pflege*, 27(6), pp.430–430.

Folbre, N. (1994). Who Pays for the Kids? Gender and the Structures of Constraint. Routledge.

Francese, M. and Prady, D. (2018). *Universal Basic Income: Debate and Impact Assessment*. [online] IMF. Available at:

https://www.imf.org/en/Publications/WP/Issues/2018/12/10/Universal-Basic-Income-Debate-and-Impact-Assessment-46441.

Gaventa, J. (2002). Empowerment: A Briefing Note. unpublished monograph.

Gheaus, A. (2008). Basic Income, Gender Justice and the Costs of Gender-Symmetrical Lifestyles. *Basic Income Studies*, 3(3). doi:https://doi.org/10.2202/1932-0183.1134.

GiveDirectly (2023). *Early findings from the world's largest UBI study*. [online] GiveDirectly. Available at: https://www.givedirectly.org/2023-ubi-results/.

Goldblatt, B. (2020). Basic Income, Gender and Human Rights. *SSRN Electronic Journal*. doi:https://doi.org/10.2139/ssrn.4006768.

Guterres, A. (2018). *Address to the General Assembly*. [online] United Nations Secretary-General. Available at: https://www.un.org/sg/en/content/sg/speeches/2018-09-25/address-73rd-general-assembly.

Haagh, L. (2011). Basic income, social democracy and control over time. *Policy & Politics*, 39(1), pp.43–66. doi:https://doi.org/10.1332/030557311x546316.

Haagh, L. (2019). The Case for Universal Basic Income. John Wiley & Sons.

Hair, J., Black, W.C., Babin, B.J. and Anderson, R.E. (2010). *Multivariate Data Analysis: A Global Perspective*. 7th ed. Upper Saddle River: Pearson Education, Cop.

Handa, S., Natali, L., Seidenfeld, D., Tembo, G. and Davis, B. (2018). Can unconditional cash transfers raise long-term living standards? Evidence from Zambia. *Journal of Development Economics*, 133, pp.42–65. doi:https://doi.org/10.1016/j.jdeveco.2018.01.008.

HIILAMO, H. and KANGAS, O. (2009). Trap for Women or Freedom to Choose? The Struggle over Cash for Child Care Schemes in Finland and Sweden. *Journal of Social Policy*, 38(3), pp.457–475. doi:https://doi.org/10.1017/s0047279409003067.

Hoynes, H. and Rothstein, J. (2019). Universal Basic Income in the United States and Advanced Countries. *Annual Review of Economics*, [online] 11(1), pp.929–958. doi:https://doi.org/10.1146/annurev-economics-080218-030237.

Jauhiainen, S., Kangas, O., Simanainen, M., Ylikännö, M., Kangas, O., Jauhiainen, S., Simanainen, M. and Ylikanno, M. (2021). *Experimenting with Unconditional Basic Income:*Lessons from the Finnish BI Experiment 20172018. [online] Cheltenham, UK: Edward Elgar Publishing. doi:https://doi.org/10.4337/9781839104855.

Jordan, B. (2008). Welfare and well-being. Policy Press.

Kabeer, N. (1999). Resources, Agency, Achievements: Reflections on the Measurement of Women's Empowerment. *Development and Change*, 30(3), pp.435–464.

Kangas, O., Jauhiainen, S., Miska Simanainen and Ylikännö, M. (2019). The basic income experiment 2017–2018 in Finland: preliminary results. *REPORTS AND MEMORANDUMS OF THE MINISTRY OF SOCIAL AFFAIRS AND HEALTH 2019:9*. [online] Available at: https://julkaisut.valtioneuvosto.fi/bitstream/handle/10024/161361/Report_The%20Basic% 20Income%20Experiment%2020172018%20in%20Finland.pdf [Accessed 29 Sep. 2024].

Kangas, O., Jauhiainen, S., Simanainen, M. and Ylikanno, M. (2021a). *Experimenting with Unconditional Basic Income Lessons from the Finnish BI Experiment 2017-2018*. Edward Elgar Publishing.

Kangas, O., Jauhiainen, S., Simanainen, M., Ylikanno, M., Kangas, O. and Simanainen, M. (2021b). Experimenting with Unconditional Basic Income. [online] Cheltenham, UK: Edward Elgar Publishing. doi:https://doi.org/10.4337/9781839104855.00010.

Kangas, O., Simanainen, M. and Honkanen, P. (2017). Basic Income in the Finnish Context. *Intereconomics*, 52(2), pp.87–91. doi:https://doi.org/10.1007/s10272-017-0652-0.

Kangas, O. and Ylikännö, M. (2023). Basic Income and the Status of Women in an Established GenderEqual Welfare State: Results from the Finnish Basic Income Experiment. *International Journal of Environmental Research and Public Health*, 20(3). doi:https://doi.org/10.3390/ijerph20031733.

Kettunen, P. (1999). Review Essay: A Return to the Figure of the Free Nordic Peasant. *Acta Sociologica*, 42(3), pp.259–269. doi:https://doi.org/10.1177/000169939904200306.

Koslowski, A. and Duvander, A.-Z. (2018). Basic Income: The Potential for Gendered Empowerment? *Social Inclusion*, 6(4), p.8. doi:https://doi.org/10.17645/si.v6i4.1487.

Lenczewska, O. (2022). Universal Basic Income and Divergent Theories of Gender Justice. *Hypatia*, 37(4), pp.705–725. doi:https://doi.org/10.1017/hyp.2022.57.

Livingston, G. (2018). Facts on unmarried parents in the U.S. [online] Pew Research Center's Social & Demographic Trends Project. Available at: https://www.pewresearch.org/social-trends/2018/04/25/the-changing-profile-of-unmarried-parents/.

Lombardozzi, L. (2020). Gender Inequality, Social Reproduction and the Universal Basic Income. *The Political Quarterly*, 91(2), pp.317–323. doi:https://doi.org/10.1111/1467-923x.12844.

McCall, L. (2005). The Complexity of Intersectionality. *Signs: Journal of Women in Culture and Society*, 30(3), pp.1771–1800.

McKay, A. (2001). Rethinking Work and Income Maintenance Policy: Promoting Gender Equality Through a Citizens' Basic Income. *Feminist Economics*, 7(1), pp.97–118. doi:https://doi.org/10.1080/13545700010022721.

McKay, A. (2007). Why a citizens' basic income? A question of gender equality or gender bias. *Work, Employment and Society*, 21(2), pp.337–348. doi:https://doi.org/10.1177/0950017007076643.

McLean, C. (2016). ... and justice for all?: Basic income and the principles of gender equity. *Juncture*, 22(4), pp.284–288. doi:https://doi.org/10.1111/j.2050-5876.2016.00875.x. Meade, J. (1964). *Efficiency, Equality and the Ownership of Property*. London: George Allen & Unwin.

Miller, A., Yamamori, T. and Zelleke, A. (2023). The Gender Effects of a Basic Income. In: M. Torry, ed., *The Palgrave International Handbook of Basic Income*. [online] Cham: Springer International Publishing, pp.175–197. doi:https://doi.org/10.1007/9783031410017 9.

Nadasen, P. (2012). Rethinking the Welfare Rights Movement. Routledge.

Narayan, D. (2005). *Measuring empowerment : cross disciplinary perspectives*. [online] World Bank. Available at:

http://documents.worldbank.org/curated/en/960161468175149824/Measuring-empowerment-cross-disciplinary-perspectives [Accessed 29 Sep. 2024].

Nussbaum, M.C. (2000). *Women and human development : the capabilities approach*. Cambridge; New York: Cambridge University Press.

Pallant, J. (2020). SPSS Survival Manual: a Step by Step Guide to Data Analysis Using IBM SPSS. 7th ed. S.L.: Open Univ Press.

Pateman, C. (2004). Democratizing Citizenship: Some Advantages of a Basic Income. *Politics & Society*, 32(1), pp.89–105. doi:https://doi.org/10.1177/0032329203261100.

Patton, M.Q. (2002). *Qualitative Research and Evaluation Methods*. 3rd ed. [online] Thousand Oaks, Calif.: Sage Publications. Available at:

https://aulasvirtuales.wordpress.com/wp-content/uploads/2014/02/qualitative-researchevaluation-methods-by-michael-patton.pdf.

Phillipe Van Parijs and Yannick Vanderborght (2017). *Basic income. A radical proposal for a free society and a sane economy.* Cambridge: Harvard University Press.

Pike, A., Andrés Rodriguez-Pose, Tomaney, J. and Rodriguez-Pose, A. (2006). *Local and Regional Development*. Routledge.

Putnam, R.D. (2000). *Bowling alone: the Collapse and Revival of American Community*. New York: Simon & Schuster.

Richardson, R. (2018). Measuring women's empowerment: A critical review of current practices and recommendations for researchers. *Social Indicators Research*, 137. doi:https://doi.org/10.1007/s11205-017-1622-4.

Robeyns, I. (2001). An income of one's own: A radical vision of welfare policies in Europe and beyond. *Gender & Development*, 9(1), pp.82–89. doi:https://doi.org/10.1080/13552070127729.

Robeyns, I. (2008). Introduction: Revisiting the Feminism and Basic Income Debate. *Basic Income Studies*, 3(3). doi:https://doi.org/10.2202/1932-0183.1137.

Rowlands, J. (1997). *Questioning empowerment: working with women in Honduras*. Oxford England: Oxfam.

Ryff, C.D. (1989). Happiness is everything, or is it? Explorations on the meaning of psychological well-being. *Journal of Personality and Social Psychology*, 57(6), pp.1069–1081. doi:https://doi.org/10.1037/0022-3514.57.6.1069.

Sauro, J. and Lewis, J.D. (2016). An introduction to correlation, regression, and ANOVA. doi:https://doi.org/10.1016/b978-0-12-802308-2.00010-2.

Schulz, P. (2017). Universal basic income in a feminist perspective and gender analysis. *Global Social Policy: An Interdisciplinary Journal of Public Policy and Social Development*, 17(1), pp.89–92. doi:https://doi.org/10.1177/1468018116686503.

Sen, A. (1999). Development as Freedom. Oxford: Oxford University Press.

Standing, G. (2017). *Basic income : and how we can make it happen*. Uk: Pelican, An Imprint Of Penguin Books.

Sumi Madhok (2013). Rethinking Agency. Routledge.

Tabachnick, B.G. and Fidell, L.S. (2013). *Using multivariate statistics*. 6th ed. Boston: Pearson Education.

Van Parijs, P. (2000). *A Basic Income for All*. [online] Boston Review. Available at: https://www.bostonreview.net/forum/ubi-van-parijs.

Widerquist, K. (2019). Three Waves of Basic Income Support. *The Palgrave International Handbook of Basic Income*, pp.31–44. doi:https://doi.org/10.1007/978-3-030-23614-4_3.

Williams, L. (2021). *Universal basic income: Potential and limitations from a gender perspective*. [online] Research and Data Section, UN Women. Available at: https://www.unwomen.org/sites/default/files/Headquarters/Attachments/Sections/Library /Publications/2021/Policy-brief-Universal-basic-income-en.pdf [Accessed 29 Sep. 2024].

Wilson, K. (2011). 'Race', Gender and Neoliberalism: changing visual representations in development. *Third World Quarterly*, 32(2), pp.315–331. doi:https://doi.org/10.1080/01436597.2011.560471.

Wispelaere, J., Halmetoja, A. and Pulkka, V. (2018). The Rise (and Fall) of the Basic Income Experiment in Finland. *CESifo Forum*, 19, pp.15–19.

Zelleke, A. (2011). Feminist political theory and the argument for an unconditional basic income. *Policy & Politics*, 39(1), pp.27–42. doi:https://doi.org/10.1332/030557311x546299.

8. Appendix

Appendix A – Sub Index and Expanded Index Creations

```
* Encoding: UTF-8.
* 1) Old Empowerment Index (q12 1, q12 2, q12 3).
RECODE q12 1 q12 2 q12 3 (1=1) (2=2) (3=3) (4=4) (5=5) (6=SYSMIS) INTO q12 1 5pt q12 2 5pt q12 3 5pt.
EXECUTE.
* 2) Life Satisfaction (q11).
RECODE g11 (0, 1, 2=1) (3, 4=2) (5, 6=3) (7=4) (8, 9, 10=5) (99=SYSMIS) INTO g11 5pt.
EXECUTE.
* 3) Health and Work Capacity (q13, q16).
RECODE q13 (1=5) (2=4) (3=3) (4=2) (5=1) (6=SYSMIS) INTO q13 5pt.
RECODE q16 (0, 1, 2, 3=1) (4, 5=2) (6=3) (7=4) (8, 9, 10=5) (99=SYSMIS) INTO q16 5pt.
EXECUTE.
* 4) Mental Well-being (q17 1 to q17 5).
RECODE q17 1 q17 2 q17 4 (1,2=1) (3=2) (4=3) (5=4) (6=5) (7=SYSMIS) INTO q17 1 5pt q17 2 5pt q17 4 5pt.
RECODE q17 3 q17 5 (1,2=5) (3=4) (4=3) (5=2) (6=1) (7=SYSMIS) INTO q17 3 5pt q17 5 5pt.
EXECUTE.
* 5) Cognitive Functioning (g20 to g22).
RECODE q20 q21 q22 (1=5) (2=4) (3=3) (4=2) (5=1) (6=SYSMIS) INTO q20 5pt q21 5pt q22 5pt.
EXECUTE.
* 6) Social Capital and Trust (q12 6, q12 7).
RECODE q12 6 q12 7 (1=1) (2=2) (3=3) (4=4) (5=5) (6=SYSMIS) INTO q12 6 5pt q12 7 5pt.
EXECUTE.
* 7) Meaningful Work and Material Well-being (q12 4, q12 5).
RECODE q12 4 q12 5 (1=1) (2=2) (3=3) (4=4) (5=5) (6=SYSMIS) INTO q12 4 5pt q12 5 5pt.
EXECUTE.
*Index Creation
```

```
* 1) Old Empowerment Index.
COMPUTE OldEmpowerment = MEAN(q12 1 5pt, q12 2 5pt, q12 3 5pt).
EXECUTE.
* 2) Life Satisfaction Index.
COMPUTE LifeSatisfaction = q11 5pt.
EXECUTE.
* 3) Health and Work Capacity Index.
COMPUTE HealthWorkCapacity = MEAN(q13 5pt, q16 5pt).
EXECUTE.
* 4) Mental Well-being Index.
COMPUTE MentalWellbeing = MEAN(q17_1_5pt, q17_2_5pt, q17_3_5pt, q17_4_5pt, q17_5_5pt).
EXECUTE.
* 5) Cognitive Functioning Index.
COMPUTE CognitiveFunctioning = MEAN(q20 5pt, q21 5pt, q22 5pt).
EXECUTE.
* 6) Social Capital and Trust Index.
COMPUTE SocialCapitalTrust = MEAN(q12 7 5pt, q12 6 5pt).
EXECUTE.
* 7) Meaningful Work and Material Well-being Index.
COMPUTE MeaningfulWorkMaterialWellbeing = MEAN(q12 4 5pt, q12 5 5pt).
EXECUTE.
* Add variable labels.
VARIABLE LABELS
  OldEmpowerment 'Old Empowerment Index'
  LifeSatisfaction 'Life Satisfaction Index'
  HealthWorkCapacity 'Health and Work Capacity Index'
  MentalWellbeing 'Mental Well-being Index'
  CognitiveFunctioning 'Cognitive Functioning Index'
  SocialCapitalTrust 'Social Capital and Trust Index'
  MeaningfulWorkMaterialWellbeing 'Meaningful Work and Material Well-being Index'.
```

* Set missing values for all indexes.

MISSING VALUES OldEmpowerment LifeSatisfaction HealthWorkCapacity MentalWellbeing CognitiveFunctioning SocialCapitalTrust MeaningfulWorkMaterialWellbeing (LO THRU 0).

EXECUTE.

- * 1) Expanded empowerment Index.
- * Create Expanded Empowerment Index.

COMPUTE ExpandedEmpowermentIndex = MEAN(OldEmpowerment, LifeSatisfaction, HealthWorkCapacity, MentalWellbeing,

CognitiveFunctioning, SocialCapitalTrust, MeaningfulWorkMaterialWellbeing).

EXECUTE.

* Add variable label.

VARIABLE LABELS ExpandedEmpowermentIndex 'Expanded Empowerment Index'.

* Set missing values.

MISSING VALUES ExpandedEmpowermentIndex (LO THRU 0).

* Display descriptive statistics of the new index. DESCRIPTIVES VARIABLES=ExpandedEmpowermentIndex /STATISTICS=MEAN STDDEV MIN MAX.

Descriptives

Notes

Output Created		07-SEP-2024 12:09:59
Comments		
Input	Active Dataset	DataSet1
	Filter	<none></none>
	Weight	<none></none>
	Split File	<none></none>
	N of Rows in Working Data File	1597

Missing Value Handling	Definition of Missing	User defined missing values are treated as missing.
	Cases Used	All non-missing data are used.
Syntax		DESCRIPTIVES VARIABLES=ExpandedEmpow ermentIndex /STATISTICS=MEAN STDDEV MIN MAX.
Resources	Processor Time	00:00:00.00
	Elapsed Time	00:00:00.00

[DataSet1]

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
Expanded Empowerment Index	1597	1.17	5.00	3.4992	.79931
Valid N (listwise)	1597				

Appendix B – **Reliability and Factor Analysis** of all Index **Appendix** C - **Old Empowerment Index** – **Add creation**

```
* 1) Old Empowerment Add Index.

COMPUTE OldEmpowermentAdd = q12_1_5pt + q12_2_5pt + q12_3_5pt.

EXECUTE.

GLM oldempowermentadd BY tyyppi t1 WITH t2 t4 q16_5pt

/DESIGN=tyyppi t1 tyyppi*t1 t2 t4 q16_5pt

/PRINT=PARAMETER.
```

General Linear Model

Notes

Output Created		07-SEP-2024 12:10:27
Comments		
Input	Active Dataset	DataSet1
	Filter	<none></none>
	Weight	<none></none>
	Split File	<none></none>
	N of Rows in Working Data File	1597
Missing Value Handling	Definition of Missing	User-defined missing values are treated as missing.

	Cases Used	Statistics are based on all cases with valid data for all variables in the model.
Syntax		GLM oldempowermentadd BY tyyppi t1 WITH t2 t4 q16_5pt /DESIGN=tyyppi t1 tyyppi*t1 t2 t4 q16_5pt /PRINT=PARAMETER.
Resources	Processor Time	00:00:00.03
	Elapsed Time	00:00:00.03

Between-Subjects Factors

		Value Label	N
[tyyppi] To which group (test or	0	Control group	999
control group) does the respondent belong:	1	Test group	547
[t1] The respondent's gender	1	Female	741
	2	Male	805

Tests of Between-Subjects Effects

Dependent Variable: OldEmpowermentAdd

	Type III Sum of				
Source	Squares	df	Mean Square	F	Sig.
Corrected Model	3761.679 ^a	6	626.946	88.256	<.001
Intercept	3140.661	1	3140.661	442.116	<.001
tyyppi	161.371	1	161.371	22.716	<.001
t1	45.948	1	45.948	6.468	.011
tyyppi * t1	.136	1	.136	.019	.890
t2	36.790	1	36.790	5.179	.023

t4	1.821	1	1.821	.256	.613
q16_5pt	2918.020	1	2918.020	410.775	<.001
Error	10932.588	1539	7.104		
Total	170597.000	1546			
Corrected Total	14694.267	1545			

a. R Squared = .256 (Adjusted R Squared = .253)

Parameter Estimates

Dependent Variable: OldEmpowermentAdd

					95% Confide	nce Interval
Parameter	В	Std. Error	t	Sig.	Lower Bound	Upper Bound
Intercept	6.806	.345	19.707	<.001	6.128	7.483
[tyyppi=0]	660	.196	-3.359	<.001	-1.045	275
[tyyppi=1]	0 ^a				-	
[t1=1]	.383	.229	1.674	.094	066	.832
[t1=2]	O ^a				-	
[tyyppi=0] * [t1=1]	039	.284	139	.890	597	.518
[tyyppi=0] * [t1=2]	0 ^a					
[tyyppi=1] * [t1=1]	0 ^a		-	-		
[tyyppi=1] * [t1=2]	0 ^a					
t2	128	.056	-2.276	.023	239	018
t4	021	.042	506	.613	103	.061
q16_5pt	1.009	.050	20.268	<.001	.911	1.107

a. This parameter is set to zero because it is redundant.

Appendix D – **GLM** For Expanded Empowerment Index and Sub Index

GLM ExpandedEmpowermentIndex BY tyyppi t1 WITH t2 t4 q16_5pt
/DESIGN=tyyppi t1 tyyppi*t1 t2 t4 q16_5pt
/PRINT=PARAMETER.

General Linear Model

Notes

Output Created		07-SEP-2024 12:10:27
Comments		
Input	Active Dataset	DataSet1
	Filter	<none></none>
	Weight	<none></none>
	Split File	<none></none>
	N of Rows in Working Data File	1597
Missing Value Handling	Definition of Missing	User-defined missing values are treated as missing.
	Cases Used	Statistics are based on all cases with valid data for all variables in the model.
Syntax		GLM ExpandedEmpowermentIndex BY tyyppi t1 WITH t2 t4

		q16_5pt /DESIGN=tyyppi t1 tyyppi*t1 t2 t4 q16_5pt /PRINT=PARAMETER.
Resources	Processor Time	00:00:00.06
	Elapsed Time	00:00:00.30

Between-Subjects Factors

		Value Label	N
[tyyppi] To which group (test or	0	Control group	1023
control group) does the respondent belong:	1	Test group	566
[t1] The respondent's gender	1	Female	761
	2	Male	828

Tests of Between-Subjects Effects

Dependent Variable: Expanded Empowerment Index

	Type III Sum of				
Source	Squares	df	Mean Square	F	Sig.
Corrected Model	509.110 ^a	6	84.852	265.829	<.001
Intercept	320.129	1	320.129	1002.923	<.001
tyyppi	9.926	1	9.926	31.098	<.001
t1	2.945	1	2.945	9.226	.002
tyyppi * t1	.006	1	.006	.019	.890
t2	.988	1	.988	3.096	.079
t4	.117	1	.117	.367	.545
q16_5pt	419.132	1	419.132	1313.084	<.001
Error	504.969	1582	.319		

Total	20489.863	1589		
Corrected Total	1014.079	1588		

a. R Squared = .502 (Adjusted R Squared = .500)

Parameter Estimates

Dependent Variable: Expanded Empowerment Index

					95% Confidence Interval	
Parameter	В	Std. Error	t	Sig.	Lower Bound	Upper Bound
Intercept	2.136	.072	29.482	<.001	1.994	2.278
[tyyppi=0]	170	.041	-4.151	<.001	250	090
[tyyppi=1]	0 ^a					
[t1=1]	.087	.048	1.814	.070	007	.180
[t1=2]	0 ^a					
[tyyppi=0] * [t1=1]	.008	.059	.138	.890	108	.125
[tyyppi=0] * [t1=2]	0 ^a				-	
[tyyppi=1] * [t1=1]	0 ^a					
[tyyppi=1] * [t1=2]	0 ^a					
t2	021	.012	-1.760	.079	044	.002
t4	.005	.009	.606	.545	012	.022
q16_5pt	.376	.010	36.236	<.001	.356	.397

a. This parameter is set to zero because it is redundant.

GLM oldempowerment BY tyyppi t1 WITH t2 t4 q16_5pt /DESIGN=tyyppi t1 tyyppi*t1 t2 t4 q16_5pt /PRINT=PARAMETER.

General Linear Model

Notes

Output Created	Output Created				
Comments					
Input	Active Dataset	DataSet1			
	Filter	<none></none>			
	Weight	<none></none>			
	Split File	<none></none>			
	N of Rows in Working Data File	1597			
Missing Value Handling	Definition of Missing	User-defined missing values are treated as missing.			
	Cases Used	Statistics are based on all cases with valid data for all variables in the model.			
Syntax		GLM oldempowerment BY tyyppi t1 WITH t2 t4 q16_5pt /DESIGN=tyyppi t1 tyyppi*t1 t2 t4 q16_5pt /PRINT=PARAMETER.			
Resources	Processor Time	00:00:00.05			
	Elapsed Time	00:00:00.14			

Between-Subjects Factors

		Value Label	N
[tyyppi] To which group (test or control group) does the respondent belong:	0	Control group	1023
	1	Test group	566
[t1] The respondent's gender	1	Female	761
	2	Male	828

Tests of Between-Subjects Effects

Dependent Variable: Old Empowerment Index

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	418.251 ^a	6	69.708	87.103	<.001
Intercept	367.744	1	367.744	459.507	<.001
tyyppi	15.258	1	15.258	19.066	<.001
t1	6.069	1	6.069	7.584	.006
tyyppi * t1	.024	1	.024	.030	.863
t2	4.761	1	4.761	5.948	.015
t4	.272	1	.272	.340	.560
q16_5pt	325.296	1	325.296	406.467	<.001
Error	1266.077	1582	.800		
Total	19458.972	1589			
Corrected Total	1684.328	1588			

a. R Squared = .248 (Adjusted R Squared = .245)

Parameter Estimates

Dependent Variable: Old Empowerment Index

Parameter B Std. Error t Sig. 95% Confidence Interval

					Lower Bound	Upper Bound
Intercept	2.280	.115	19.879	<.001	2.055	2.505
[tyyppi=0]	198	.065	-3.047	.002	325	070
[tyyppi=1]	O ^a					
[t1=1]	.138	.076	1.830	.067	010	.286
[t1=2]	O ^a				-	
[tyyppi=0] * [t1=1]	016	.094	173	.863	200	.168
[tyyppi=0] * [t1=2]	O ^a					
[tyyppi=1] * [t1=1]	O ^a					
[tyyppi=1] * [t1=2]	0 ^a					
t2	046	.019	-2.439	.015	082	009
t4	008	.014	583	.560	035	.019
q16_5pt	.332	.016	20.161	<.001	.299	.364

a. This parameter is set to zero because it is redundant.

GLM LifeSatisfaction BY tyyppi t1 WITH t2 t4 q16_5pt /DESIGN=tyyppi t1 tyyppi*t1 t2 t4 q16_5pt /PRINT=PARAMETER.

General Linear Model

Notes

Output Created	07-SEP-2024 12:10:28
----------------	----------------------

Comments			
Input	Active Dataset	DataSet1	
	Filter	<none></none>	
	Weight	<none></none>	
	Split File	<none></none>	
	N of Rows in Working Data File	1597	
Missing Value Handling	Definition of Missing	User-defined missing values are treated as missing.	
	Cases Used	Statistics are based on all cases with valid data for all variables in the model.	
Syntax		GLM LifeSatisfaction BY tyyppi t1 WITH t2 t4 q16_5pt /DESIGN=tyyppi t1 tyyppi*t1 t2 t4 q16_5pt /PRINT=PARAMETER.	
Resources	Processor Time	00:00:00.02	
	Elapsed Time	00:00:00.06	

Between-Subjects Factors

		Value Label	N
[tyyppi] To which group (test or	0	Control group	1019
control group) does the respondent belong:	1	Test group	561
[t1] The respondent's gender	1	Female	758
	2	Male	822

Tests of Between-Subjects Effects

Dependent Variable: Life Satisfaction Index

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	544.610 ^a	6	90.768	92.325	<.001
Intercept	466.052	1	466.052	474.045	<.001
tyyppi	11.847	1	11.847	12.050	<.001
t1	21.172	1	21.172	21.535	<.001
tyyppi * t1	.569	1	.569	.579	.447
t2	.024	1	.024	.024	.876
t4	.852	1	.852	.867	.352
q16_5pt	453.362	1	453.362	461.138	<.001
Error	1546.476	1573	.983		
Total	27813.000	1580			
Corrected Total	2091.085	1579			

a. R Squared = .260 (Adjusted R Squared = .258)

Parameter Estimates

Dependent Variable: Life Satisfaction Index

					95% Confide	nce Interval
Parameter	В	Std. Error	t	Sig.	Lower Bound	Upper Bound
Intercept	2.530	.128	19.810	<.001	2.279	2.780
[tyyppi=0]	222	.072	-3.074	.002	363	080
[tyyppi=1]	0 ^a					
[t1=1]	.204	.084	2.426	.015	.039	.369
[t1=2]	0 ^a					
[tyyppi=0] * [t1=1]	.080	.105	.761	.447	125	.285
[tyyppi=0] * [t1=2]	0 ^a					
[tyyppi=1] * [t1=1]	0 ^a			-		

[tyyppi=1] * [t1=2]	0 ^a					
t2	.003	.021	.156	.876	037	.044
t4	014	.015	931	.352	044	.016
q16_5pt	.394	.018	21.474	<.001	.358	.430

a. This parameter is set to zero because it is redundant.

GLM HealthWorkCapacity BY tyyppi t1 WITH t2 t4 q16_5pt /DESIGN=tyyppi t1 tyyppi*t1 t2 t4 q16_5pt /PRINT=PARAMETER.

General Linear Model

Notes

Output Created	Output Created		
Comments			
Input	Active Dataset	DataSet1	
	Filter	<none></none>	
	Weight	<none></none>	
	Split File	<none></none>	
	N of Rows in Working Data File	1597	
Missing Value Handling	Definition of Missing	User-defined missing values are treated as missing.	

	Cases Used	Statistics are based on all cases with valid data for all variables in the model.
Syntax		GLM HealthWorkCapacity BY tyyppi t1 WITH t2 t4 q16_5pt /DESIGN=tyyppi t1 tyyppi*t1 t2 t4 q16_5pt /PRINT=PARAMETER.
Resources	Processor Time	00:00:00.02
	Elapsed Time	00:00:00.05

Between-Subjects Factors

		Value Label	N
[tyyppi] To which group (test or	0	Control group	1023
control group) does the respondent belong:	1	Test group	566
[t1] The respondent's gender	1	Female	761
	2	Male	828

Tests of Between-Subjects Effects

Dependent Variable: Health and Work Capacity Index

	Type III Sum of				
Source	Squares	df	Mean Square	F	Sig.
Corrected Model	1814.206 ^a	6	302.368	2469.808	.000
Intercept	53.274	1	53.274	435.155	<.001
tyyppi	.025	1	.025	.204	.652
t1	.059	1	.059	.486	.486
tyyppi * t1	.002	1	.002	.017	.896
t2	1.869	1	1.869	15.266	<.001

t4	.855	1	.855	6.981	.008
q16_5pt	1575.983	1	1575.983	12872.992	.000
Error	193.677	1582	.122		
Total	23519.250	1589			
Corrected Total	2007.883	1588			

a. R Squared = .904 (Adjusted R Squared = .903)

Parameter Estimates

Dependent Variable: Health and Work Capacity Index

					95% Confide	nce Interval
Parameter	В	Std. Error	t	Sig.	Lower Bound	Upper Bound
Intercept	.854	.045	19.035	<.001	.766	.942
[tyyppi=0]	011	.025	423	.673	061	.039
[tyyppi=1]	0 ^a					
[t1=1]	.010	.030	.355	.723	047	.068
[t1=2]	0 ^a					
[tyyppi=0] * [t1=1]	.005	.037	.131	.896	067	.077
[tyyppi=0] * [t1=2]	0 ^a					
[tyyppi=1] * [t1=1]	0 ^a					
[tyyppi=1] * [t1=2]	0 ^a					
t2	029	.007	-3.907	<.001	043	014
t4	.014	.005	2.642	.008	.004	.025
q16_5pt	.730	.006	113.459	.000	.717	.742

a. This parameter is set to zero because it is redundant.

/DESIGN=tyyppi t1 tyyppi*t1 t2 t4 q16_5pt /PRINT=PARAMETER.

General Linear Model

Notes

Output Created		07-SEP-2024 12:10:28
Comments		
Input	Active Dataset	DataSet1
	Filter	<none></none>
	Weight	<none></none>
	Split File	<none></none>
	N of Rows in Working Data File	1597
Missing Value Handling	Definition of Missing	User-defined missing values are treated as missing.
	Cases Used	Statistics are based on all cases with valid data for all variables in the model.
Syntax		GLM MentalWellbeing BY tyyppi t1 WITH t2 t4 q16_5pt /DESIGN=tyyppi t1 tyyppi*t1 t2 t4 q16_5pt /PRINT=PARAMETER.
Resources	Processor Time	00:00:00.03

Elapsed Time	00:00:00.24
--------------	-------------

Between-Subjects Factors

		Value Label	N
[tyyppi] To which group (test or	0	Control group	1023
control group) does the respondent belong:	1	Test group	566
[t1] The respondent's gender	1	Female	761
	2	Male	828

Tests of Between-Subjects Effects

Dependent Variable: Mental Well-being Index

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	368.332ª	6	61.389	86.383	<.001
Intercept	396.409	1	396.409	557.805	<.001
tyyppi	7.444	1	7.444	10.475	.001
t1	.152	1	.152	.214	.644
tyyppi * t1	.099	1	.099	.139	.709
t2	18.130	1	18.130	25.512	<.001
t4	.975	1	.975	1.372	.242
q16_5pt	338.624	1	338.624	476.494	<.001
Error	1124.261	1582	.711		
Total	25692.753	1589			
Corrected Total	1492.593	1588			

a. R Squared = .247 (Adjusted R Squared = .244)

Parameter Estimates

Dependent Variable: Mental Well-being Index

					95% Confide	nce Interval
Parameter	В	Std. Error	t	Sig.	Lower Bound	Upper Bound
Intercept	2.402	.108	22.224	<.001	2.190	2.614
[tyyppi=0]	160	.061	-2.621	.009	280	040
[tyyppi=1]	0 ^a					
[t1=1]	.004	.071	.057	.954	136	.144
[t1=2]	0 ^a		-			
[tyyppi=0] * [t1=1]	.033	.089	.373	.709	141	.207
[tyyppi=0] * [t1=2]	0 ^a		-			
[tyyppi=1] * [t1=1]	O ^a					
[tyyppi=1] * [t1=2]	0 ^a					
t2	.089	.018	5.051	<.001	.054	.123
t4	015	.013	-1.171	.242	041	.010
q16_5pt	.338	.015	21.829	<.001	.308	.369

a. This parameter is set to zero because it is redundant.

GLM CognitiveFunctioning BY tyyppi t1 WITH t2 t4 q16_5pt /DESIGN=tyyppi t1 tyyppi*t1 t2 t4 q16_5pt /PRINT=PARAMETER.

General Linear Model

Notes

Output Created		07-SEP-2024 12:10:28
Comments		
Input	Active Dataset	DataSet1
	Filter	<none></none>
	Weight	<none></none>
	Split File	<none></none>
	N of Rows in Working Data File	1597
Missing Value Handling	Definition of Missing	User-defined missing values are treated as missing.
	Cases Used	Statistics are based on all cases with valid data for all variables in the model.
Syntax		GLM CognitiveFunctioning BY tyyppi t1 WITH t2 t4 q16_5pt /DESIGN=tyyppi t1 tyyppi*t1 t2 t4 q16_5pt /PRINT=PARAMETER.
Resources	Processor Time	00:00:00.02
	Elapsed Time	00:00:00.09

Between-Subjects Factors

		Value Label	N
[tyyppi] To which group (test or	0	Control group	1023
control group) does the respondent belong:	1	Test group	566
[t1] The respondent's gender	1	Female	761
	2	Male	828

Tests of Between-Subjects Effects

Dependent Variable: Cognitive Functioning Index

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	223.287 ^a	6	37.215	88.750	<.001
Intercept	475.335	1	475.335	1133.586	<.001
tyyppi	7.440	1	7.440	17.743	<.001
t1	.108	1	.108	.258	.612
tyyppi * t1	.174	1	.174	.415	.520
t2	1.381	1	1.381	3.293	.070
t4	4.785	1	4.785	11.410	<.001
q16_5pt	173.946	1	173.946	414.830	<.001
Error	663.363	1582	.419		
Total	22328.167	1589			
Corrected Total	886.651	1588			

a. R Squared = .252 (Adjusted R Squared = .249)

Parameter Estimates

Dependent Variable: Cognitive Functioning Index

					95% Confide	nce Interval
Parameter	В	Std. Error	t	Sig.	Lower Bound	Upper Bound
Intercept	2.606	.083	31.390	<.001	2.444	2.769
[tyyppi=0]	122	.047	-2.594	.010	214	030
[tyyppi=1]	0 ^a					
[t1=1]	.039	.055	.718	.473	068	.147
[t1=2]	0 ^a					
[tyyppi=0] * [t1=1]	044	.068	644	.520	177	.090

[tyyppi=0] * [t1=2]	0 ^a	-				
[tyyppi=1] * [t1=1]	0 ^a			-		·
[tyyppi=1] * [t1=2]	0 ^a					
t2	.025	.014	1.815	.070	002	.051
t4	.034	.010	3.378	<.001	.014	.053
q16_5pt	.242	.012	20.367	<.001	.219	.266

a. This parameter is set to zero because it is redundant.

GLM SocialCapitalTrust BY tyyppi t1 WITH t2 t4 q16_5pt /DESIGN=tyyppi t1 tyyppi*t1 t2 t4 q16_5pt /PRINT=PARAMETER.

General Linear Model

Notes

Output Created	07-SEP-2024 12:10:28	
Comments		
Input	Active Dataset	DataSet1
	Filter	<none></none>
	Weight	<none></none>
	Split File	<none></none>
	N of Rows in Working Data File	1597

Missing Value Handling	Definition of Missing	User-defined missing values are treated as missing.
	Cases Used	Statistics are based on all cases with valid data for all variables in the model.
Syntax		GLM SocialCapitalTrust BY tyyppi t1 WITH t2 t4 q16_5pt //DESIGN=tyyppi t1 tyyppi*t1 t2 t4 q16_5pt //PRINT=PARAMETER.
Resources	Processor Time	00:00:00.06
	Elapsed Time	00:00:00.14

Between-Subjects Factors

		Value Label	N
[tyyppi] To which group (test or	0	Control group	1014
control group) does the respondent belong:	1	Test group	557
[t1] The respondent's gender	1	Female	749
	2	Male	822

Tests of Between-Subjects Effects

Dependent Variable: Social Capital and Trust Index

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	278.006ª	6	46.334	41.454	<.001
Intercept	352.859	1	352.859	315.694	<.001
tyyppi	24.694	1	24.694	22.093	<.001
t1	2.482	1	2.482	2.220	.136
tyyppi * t1	.872	1	.872	.780	.377

t2	20.687	1	20.687	18.508	<.001
t4	4.598	1	4.598	4.114	.043
q16_5pt	149.584	1	149.584	133.829	<.001
Error	1748.120	1564	1.118		
Total	14753.250	1571			
Corrected Total	2026.126	1570			

a. R Squared = .137 (Adjusted R Squared = .134)

Parameter Estimates

Dependent Variable: Social Capital and Trust Index

					95% Confide	nce Interval
Parameter	В	Std. Error	t	Sig.	Lower Bound	Upper Bound
Intercept	2.282	.136	16.757	<.001	2.015	2.549
[tyyppi=0]	214	.077	-2.784	.005	365	063
[tyyppi=1]	0 ^a			-		
[t1=1]	.133	.090	1.479	.139	043	.310
[t1=2]	0 ^a					
[tyyppi=0] * [t1=1]	099	.112	883	.377	318	.121
[tyyppi=0] * [t1=2]	0 ^a			-		
[tyyppi=1] * [t1=1]	0 ^a					
[tyyppi=1] * [t1=2]	0 ^a	•				
t2	096	.022	-4.302	<.001	139	052
t4	.033	.016	2.028	.043	.001	.066
q16_5pt	.226	.020	11.568	<.001	.188	.265

a. This parameter is set to zero because it is redundant.

GLM MeaningfulWorkMaterialWellbeing BY tyyppi t1 WITH t2 t4 q16_5pt /DESIGN=tyyppi t1 tyyppi*t1 t2 t4 q16_5pt /PRINT=PARAMETER.

General Linear Model

Notes

Output Created	Output Created		
Comments			
Input	Active Dataset	DataSet1	
	Filter	<none></none>	
	Weight	<none></none>	
	Split File	<none></none>	
	N of Rows in Working Data File	1597	
Missing Value Handling	Definition of Missing	User-defined missing values are treated as missing.	
	Cases Used	Statistics are based on all cases with valid data for all variables in the model.	
Syntax		GLM MeaningfulWorkMaterialWellbe ing BY tyyppi t1 WITH t2 t4 q16_5pt /DESIGN=tyyppi t1 tyyppi*t1 t2 t4 q16_5pt	

		/PRINT=PARAMETER.
Resources	Processor Time	00:00:00.05
	Elapsed Time	00:00:00.05

Between-Subjects Factors

		Value Label	N
[tyyppi] To which group (test or	0	Control group	1017
control group) does the respondent belong:	1	Test group	563
[t1] The respondent's gender	1	Female	757
	2	Male	823

Tests of Between-Subjects Effects

Dependent Variable: Meaningful Work and Material Well-being Index

	Type III Sum of				
Source	Squares	df	Mean Square	F	Sig.
Corrected Model	543.651 ^a	6	90.609	84.357	<.001
Intercept	276.418	1	276.418	257.346	<.001
tyyppi	17.293	1	17.293	16.100	<.001
t1	5.420	1	5.420	5.046	.025
tyyppi * t1	.677	1	.677	.630	.427
t2	20.318	1	20.318	18.917	<.001
t4	.227	1	.227	.212	.645
q16_5pt	397.278	1	397.278	369.867	<.001
Error	1689.573	1573	1.074		
Total	16664.000	1580			

	Corrected Total	2233.225	1579			
--	-----------------	----------	------	--	--	--

a. R Squared = .243 (Adjusted R Squared = .241)

Parameter Estimates

Dependent Variable: Meaningful Work and Material Well-being Index

					95% Confidence Interval	
Parameter	В	Std. Error	t	Sig.	Lower Bound	Upper Bound
Intercept	2.020	.133	15.191	<.001	1.759	2.281
[tyyppi=0]	263	.075	-3.488	<.001	411	115
[tyyppi=1]	0 ^a			-		
[t1=1]	.080	.088	.912	.362	092	.252
[t1=2]	0 ^a			-		
[tyyppi=0] * [t1=1]	.087	.109	.794	.427	127	.301
[tyyppi=0] * [t1=2]	0 ^a					
[tyyppi=1] * [t1=1]	0 ^a	-	-	-		
[tyyppi=1] * [t1=2]	0 ^a					
t2	094	.022	-4.349	<.001	137	052
t4	007	.016	460	.645	039	.024
q16_5pt	.367	.019	19.232	<.001	.330	.404

a. This parameter is set to zero because it is redundant.

Appendix E - 5 Intersectional Analysis

```
GLM ExpandedEmpowermentIndex BY tyyppi t1 t2 WITH t4 q16_5pt

/DESIGN = tyyppi t1 t2 tyyppi*t1 tyyppi*t2 t1*t2 tyyppi*t1*t2 t4 q16_5pt

/PRINT = PARAMETER

/EMMEANS = TABLES(tyyppi*t1*t2) COMPARE(tyyppi) COMPARE(t1) COMPARE(t2)

/EMMEANS = TABLES(t1*t2) COMPARE(t1) COMPARE(t2).
```

General Linear Model

Notes

Output Created		07-SEP-2024 12:14:13
Comments		
Input	Active Dataset	DataSet1
	Filter	<none></none>
	Weight	<none></none>
	Split File	<none></none>
	N of Rows in Working Data File	1597
Missing Value Handling	Definition of Missing	User-defined missing values are treated as missing.
	Cases Used	Statistics are based on all cases with valid data for all variables in the model.

Syntax		GLM ExpandedEmpowermentIndex BY tyyppi t1 t2 WITH t4 q16_5pt /DESIGN = tyyppi t1 t2 tyyppi*t1 tyyppi*t2 t1*t2 tyyppi*t1*t2 t4 q16_5pt /PRINT = PARAMETER /EMMEANS = TABLES(tyyppi*t1*t2) COMPARE(tyyppi) COMPARE(t1) COMPARE(t2) /EMMEANS = TABLES(t1*t2) COMPARE(t1) COMPARE(t2).
Resources	Processor Time	00:00:00.13
	Elapsed Time	00:00:00.12

Between-Subjects Factors

		Value Label	N
[tyyppi] To which group (test or	0	Control group	1023
control group) does the respondent belong:	1	Test group	566
[t1] The respondent's gender	1	Female	761
	2 Male	Male	828
[t2] The respondent's age	1	under 30 years	149
group (categorised by	2	30 - 34 years	225
researcher)	3	35-44 years	420
	4	45-54 years	442
	5	55 years or more	353

Tests of Between-Subjects Effects

Dependent Variable: Expanded Empowerment Index

	Type III Sum of				
Source	Squares	df	Mean Square	F	Sig.
Corrected Model	514.642 ^a	21	24.507	76.891	<.001
Intercept	585.758	1	585.758	1837.832	<.001
tyyppi	7.414	1	7.414	23.262	<.001
t1	2.128	1	2.128	6.676	.010
t2	1.928	4	.482	1.513	.196
tyyppi * t1	.023	1	.023	.071	.790
tyyppi * t2	1.081	4	.270	.848	.495
t1 * t2	1.981	4	.495	1.554	.184
tyyppi * t1 * t2	1.801	4	.450	1.413	.227
t4	.067	1	.067	.210	.647
q16_5pt	415.408	1	415.408	1303.355	<.001
Error	499.438	1567	.319		
Total	20489.863	1589			
Corrected Total	1014.079	1588			

a. R Squared = .507 (Adjusted R Squared = .501)

Parameter Estimates

					95% Confidence Interval	
Parameter	В	Std. Error	t	Sig.	Lower Bound	Upper Bound
Intercept	2.073	.080	26.027	<.001	1.917	2.230
[tyyppi=0]	204	.087	-2.356	.019	374	034
[tyyppi=1]	0 ^a					
[t1=1]	098	.109	899	.369	313	.116

[t1=2]	0 ^a					
[t2=1]	060	.128	466	.641	311	.191
[t2=2]	.085	.105	.808	.419	121	.290
[t2=3]	.025	.097	.260	.795	165	.215
[t2=4]	075	.094	799	.424	260	.109
[t2=5]	0 ^a					
[tyyppi=0] * [t1=1]	.193	.131	1.469	.142	065	.450
[tyyppi=0] * [t1=2]	0 ^a					
[tyyppi=1] * [t1=1]	0 ^a					
[tyyppi=1] * [t1=2]	0 ^a				-	
[tyyppi=0] * [t2=1]	.099	.157	.633	.527	209	.408
[tyyppi=0] * [t2=2]	001	.132	007	.994	260	.258
[tyyppi=0] * [t2=3]	064	.120	535	.592	300	.171
[tyyppi=0] * [t2=4]	.157	.117	1.340	.180	073	.387
[tyyppi=0] * [t2=5]	0 ^a					
[tyyppi=1] * [t2=1]	0 ^a					
[tyyppi=1] * [t2=2]	0 ^a					
[tyyppi=1] * [t2=3]	0 ^a				-	
[tyyppi=1] * [t2=4]	0 ^a				-	
[tyyppi=1] * [t2=5]	0 ^a				-	
[t1=1] * [t2=1]	.219	.191	1.145	.252	156	.594
[t1=1] * [t2=2]	.168	.161	1.045	.296	148	.484
[t1=1] * [t2=3]	.235	.142	1.654	.098	044	.514
[t1=1] * [t2=4]	.246	.142	1.733	.083	032	.525
[t1=1] * [t2=5]	O ^a					
[t1=2] * [t2=1]	0 ^a			-		-
[t1=2] * [t2=2]	O ^a					

[t1=2] * [t2=3]	0 ^a					
[t1=2] * [t2=4]	0 ^a					
[t1=2] * [t2=5]	0 ^a					
[tyyppi=0] * [t1=1] * [t2=1]	161	.235	685	.493	622	.300
[tyyppi=0] * [t1=1] * [t2=2]	270	.204	-1.326	.185	669	.129
[tyyppi=0] * [t1=1] * [t2=3]	081	.174	465	.642	423	.261
[tyyppi=0] * [t1=1] * [t2=4]	364	.173	-2.108	.035	703	025
[tyyppi=0] * [t1=1] * [t2=5]	0 ^a					
[tyyppi=0] * [t1=2] * [t2=1]	O ^a				-	
[tyyppi=0] * [t1=2] * [t2=2]	0ª					
[tyyppi=0] * [t1=2] * [t2=3]	0 ^a					
[tyyppi=0] * [t1=2] * [t2=4]	0 ^a					
[tyyppi=0] * [t1=2] * [t2=5]	O ^a					
[tyyppi=1] * [t1=1] * [t2=1]	0 ^a					
[tyyppi=1] * [t1=1] * [t2=2]	O ^a					
[tyyppi=1] * [t1=1] * [t2=3]	0 ^a					
[tyyppi=1] * [t1=1] * [t2=4]	0 ^a					
[tyyppi=1] * [t1=1] * [t2=5]	O ^a					
[tyyppi=1] * [t1=2] * [t2=1]	0 ^a					
[tyyppi=1] * [t1=2] * [t2=2]	O ^a					
[tyyppi=1] * [t1=2] * [t2=3]	0 ^a					
[tyyppi=1] * [t1=2] * [t2=4]	0 ^a					
[tyyppi=1] * [t1=2] * [t2=5]	0 ^a					
t4	.004	.009	.458	.647	013	.021
q16_5pt	.377	.010	36.102	<.001	.356	.397

a. This parameter is set to zero because it is redundant.

Estimated Marginal Means

1. [tyyppi] To which group (test or control group) does the respondent belong: * [t1] The respondent's gender * [t2] The respondent's age group (categorised by researcher)

Estimates

[tyyppi] To which group (test or control group) does the		[t2] The respondent's age group (categorised by	
respondent belong:	[t1] The respondent's gender	researcher)	Mean
Control group	Female	under 30 years	3.560 ^a
		30 - 34 years	3.444 ^a
		35-44 years	3.577 ^a
		45-54 years	3.426 ^a
		55 years or more	3.462 ^a
	Male	under 30 years	3.408 ^a
		30 - 34 years	3.452 ^a
		35-44 years	3.329 ^a

		45-54 years	3.450 ^a
		55 years or more	3.368 ^a
Test group	Female	under 30 years	3.633 ^a
		30 - 34 years	3.727 ^a
		35-44 years	3.734 ^a
		45-54 years	3.645 ^a
		55 years or more	3.474 ^a
	Male	under 30 years	3.512 ^a
		30 - 34 years	3.657 ^a
		35-44 years	3.597 ^a
		45-54 years	3.497 ^a
		55 years or more	3.572 ^a

Estimates

[tyyppi] To which group (test or control group) does the		[t2] The respondent's age group (categorised by	
respondent belong:	[t1] The respondent's gender	researcher)	Std. Error
Control group	Female	under 30 years	.087
		30 - 34 years	.079
		35-44 years	.050
		45-54 years	.047
		55 years or more	.051
	Male	under 30 years	.076
		30 - 34 years	.063
		35-44 years	.049
		45-54 years	.048

		55 years or more	.052
Test group	Female	under 30 years	.115
		30 - 34 years	.090
		35-44 years	.061
		45-54 years	.065
		55 years or more	.084
	Male	under 30 years	.107
		30 - 34 years	.078
		35-44 years	.067
		45-54 years	.063
		55 years or more	.070

Estimates

[tyyppi] To which group (test or control group) does the		[t2] The respondent's age group (categorised by	95% Confidence Interval		
respondent belong:	[t1] The respondent's gender	researcher)	Lower Bound		
Control group	Female	under 30 years	3.389		
		30 - 34 years	3.289		
		35-44 years	3.480		
		45-54 years	3.334		
		55 years or more	3.362		
	Male	under 30 years	3.258		
		30 - 34 years	3.328		
		35-44 years	3.233		
		45-54 years	3.357		
		55 years or more	3.266		
Test group	Female	under 30 years	3.407		
		30 - 34 years	3.551		
		35-44 years	3.614		
	_	45-54 years	3.516		

	55 years or more	3.309
Male	under 30 years	3.302
	30 - 34 years	3.504
	35-44 years	3.465
	45-54 years	3.373
	55 years or more	3.435

Estimates

[tyyppi] To which group (test or control group) does the	·	[t2] The respondent's age group (categorised by	95% Confidence Interval
respondent belong:	[t1] The respondent's gender	researcher)	Upper Bound
Control group	Female	under 30 years	3.731
		30 - 34 years	3.600
		35-44 years	3.675
		45-54 years	3.518
		55 years or more	3.563
	Male	under 30 years	3.558
		30 - 34 years	3.575
		35-44 years	3.425
		45-54 years	3.543
		55 years or more	3.470
Test group	Female	under 30 years	3.860
		30 - 34 years	3.902
		35-44 years	3.855
		45-54 years	3.773
		55 years or more	3.639
	Male	under 30 years	3.722
		30 - 34 years	3.809
		35-44 years	3.730
		45-54 years	3.621

55 years or more	3.709

a. Covariates appearing in the model are evaluated at the following values: [t4] The respondent's highest level of education = 2.96, q16_5pt = 3.9465.

Pairwise Comparisons

[tyyppi] To which group (test or control group) does the	tt1] The	(I) [t2] The respondent's age group	(J) [t2] The respondent's age group	Mean			95% Cor Interv Differe	al for
respondent	respondent's	(categorised by	(categorised by	Differenc	Std.	_	Lower	Upper
belong:	gender	researcher)	researcher)	e (I-J)	Error	Sig.b	Bound	Bound
Control group	Female	under 30 years	30 - 34 years	.116	.118	.325	115	.347
			35-44 years	017	.100	.865	214	.180
			45-54 years	.134	.099	.176	060	.329
			55 years or	.098	.101	.333	101	.297
			more					
		30 - 34 years	under 30 years	116	.118	.325	347	.115
			35-44 years	133	.093	.154	316	.050
			45-54 years	.018	.092	.842	162	.199

			55 years or more	018	.094	.850	203	.167
		35-44 years	under 30 years	.017	.100	.865	180	.214
			30 - 34 years	.133	.093	.154	050	.316
			45-54 years	.151*	.068	.027	.017	.285
			55 years or more	.115	.071	.108	025	.255
		45-54 years	under 30 years	134	.099	.176	329	.060
			30 - 34 years	018	.092	.842	199	.162
			35-44 years	151 [*]	.068	.027	285	017
			55 years or more	036	.069	.601	172	.100
		55 years or	under 30 years	098	.101	.333	297	.101
		more	30 - 34 years	.018	.094	.850	167	.203
			35-44 years	115	.071	.108	255	.025
			45-54 years	.036	.069	.601	100	.172
	Male	under 30 years	30 - 34 years	044	.099	.657	237	.150
		•	35-44 years	.079	.090	.383	099	.256
			45-54 years	042	.090	.640	219	.135
			55 years or	.040	.093	.667	142	.222
			more					
		30 - 34 years	under 30 years	.044	.099	.657	150	.237
			35-44 years	.123	.079	.123	033	.279
			45-54 years	.002	.079	.983	153	.157
			55 years or more	.084	.082	.306	077	.244
		35-44 years	under 30 years	079	.090	.383	256	.099
		,	30 - 34 years	123	.079	.123	279	.033
			45-54 years	121	.068	.077	255	.013
			55 years or	039	.071	.584	179	.101
			more			/		
		45-54 years	under 30 years	.042	.090	.640	135	.219

			30 - 34 years	002	.079	.983	157	.153
			35-44 years	.121	.068	.077	013	.255
			55 years or more	.082	.070	.243	056	.220
		55 years or	under 30 years	040	.093	.667	222	.142
		more	30 - 34 years	084	.082	.306	244	.077
			35-44 years	.039	.071	.584	101	.179
			45-54 years	082	.070	.243	220	.056
Test group	Female	under 30 years	30 - 34 years	093	.146	.522	379	.193
			35-44 years	101	.131	.440	357	.155
		45-54 years	011	.133	.932	272	.249	
			55 years or more	.160	.143	.265	121	.440
		30 - 34 years	under 30 years	.093	.146	.522	193	.379
			35-44 years	008	.109	.944	221	.205
			45-54 years	.082	.111	.461	136	.300
			55 years or more	.253 [*]	.123	.040	.011	.494
		35-44 years	under 30 years	.101	.131	.440	155	.357
			30 - 34 years	.008	.109	.944	205	.221
			45-54 years	.090	.089	.317	086	.265
			55 years or more	.260 [*]	.104	.013	.056	.465
		45-54 years	under 30 years	.011	.133	.932	249	.272
			30 - 34 years	082	.111	.461	300	.136
			35-44 years	090	.089	.317	265	.086
		55 years or more	.171	.106	.109	038	.380	
		55 years or	under 30 years	160	.143	.265	440	.121
		more	30 - 34 years	253 [*]	.123	.040	494	011
			35-44 years	260*	.104	.013	465	056
			45-54 years	171	.106	.109	380	.038

Male	under 30 years	30 - 34 years	144	.132	.275	403	.115
		35-44 years	085	.127	.503	333	.163
		45-54 years	.016	.124	.900	228	.259
		55 years or	060	.128	.641	311	.191
		more					
	30 - 34 years	under 30 years	.144	.132	.275	115	.403
		35-44 years	.059	.103	.565	143	.261
		45-54 years	.160	.100	.111	037	.356
		55 years or	.085	.105	.419	121	.290
		more					
	35-44 years	under 30 years	.085	.127	.503	163	.333
		30 - 34 years	059	.103	.565	261	.143
		45-54 years	.100	.092	.278	081	.282
		55 years or	.025	.097	.795	165	.215
		more					
	45-54 years	under 30 years	016	.124	.900	259	.228
		30 - 34 years	160	.100	.111	356	.037
		35-44 years	100	.092	.278	282	.081
		55 years or	075	.094	.424	260	.109
		more					
	55 years or	under 30 years	.060	.128	.641	191	.311
	more	30 - 34 years	085	.105	.419	290	.121
		35-44 years	025	.097	.795	215	.165
		45-54 years	.075	.094	.424	109	.260

Based on estimated marginal means

Univariate Tests

^{*.} The mean difference is significant at the .050 level.

b. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).

[tyyppi] To which group (test of control group) does the respondent belong:	t1] The respon	dent's gender	Sum of Squares	df	Mean Square
Control group	Female	Contrast	1.977	4	.494
		Error	499.438	1567	.319
	Male	Contrast	1.366	4	.342
		Error	499.438	1567	.319
Test group	Female	Contrast	2.227	4	.557
		Error	499.438	1567	.319
	Male	Contrast	.968	4	.242
		Error	499.438	1567	.319

Univariate Tests

Dependent Variable: Expanded Empow	erment Index
------------------------------------	--------------

[tyyppi] To which group (test o control group) does the	r			
respondent belong:	[t1] The resp	ondent's gender	F	Sig.
Control group	Female	Contrast	1.551	.185
		Error		
	Male	Contrast	1.072	.369
		Error		
Test group	Female	Contrast	1.747	.137
		Error		
	Male	Contrast	.760	.552
		Error		

Each F tests the simple effects of [t2] The respondent's age group (categorised by researcher) within each level combination of the other effects shown. These tests are based on the linearly independent pairwise comparisons among the estimated marginal means.

2. [t1] The respondent's gender * [t2] The respondent's age group (categorised by researcher)

Estimates

Dependent Variable: Expanded Empowerment Index

	[t2] The respondent's age group (categorised by			95% Confidence Interval
[t1] The respondent's gender	researcher)	Mean	Std. Error	Lower Bound
Female	under 30 years	3.597 ^a	.072	3.455
	30 - 34 years	3.586 ^a	.060	3.468
	35-44 years	3.656 ^a	.040	3.578
	45-54 years	3.535 ^a	.040	3.456
	55 years or more	3.468 ^a	.049	3.371
Male	under 30 years	3.460 ^a	.066	3.331
	30 - 34 years	3.554 ^a	.050	3.456
	35-44 years	3.463 ^a	.042	3.381
	45-54 years	3.473 ^a	.040	3.396
	55 years or more	3.470 ^a	.044	3.384

Estimates

Dependent Variable: Expanded Empowerment Index

	[t2] The respondent's age group (categorised by	95% Confidence Interval
[t1] The respondent's gender	researcher)	Upper Bound
Female	under 30 years	3.739
	30 - 34 years	3.703
	35-44 years	3.734
	45-54 years	3.614
	55 years or more	3.565
Male	under 30 years	3.589
	30 - 34 years	3.653
	35-44 years	3.545
	45-54 years	3.551
	55 years or more	3.556

a. Covariates appearing in the model are evaluated at the following values: [t4] The respondent's highest level of education = 2.96, q16_5pt = 3.9465.

Pairwise Comparisons

	(I) [t2] The respondent's age group (categorised by	(J) [t2] The respondent's age group (categorised by	Mean Difference			95% Confidence Interval for Difference ^b
[t1] The respondent's gender	researcher)	researcher)	(I-J)	Std. Error	Sig. ^b	Lower Bound
Female	under 30 years	30 - 34 years	.011	.094	.904	173
		35-44 years	059	.083	.475	221
		45-54 years	.061	.083	.460	102
		55 years or more	.129	.088	.143	044

	30 - 34 years	under 30 years	011	.094	.904	195
	·	35-44 years	070	.072	.327	211
		45-54 years	.050	.072	.487	091
		55 years or more	.117	.078	.130	035
	35-44 years	under 30 years	.059	.083	.475	103
		30 - 34 years	.070	.072	.327	070
		45-54 years	.120*	.056	.033	.010
		55 years or more	.188*	.063	.003	.064
	45-54 years	under 30 years	061	.083	.460	224
		30 - 34 years	050	.072	.487	192
		35-44 years	120 [*]	.056	.033	231
		55 years or more	.067	.064	.289	057
	55 years or more	under 30 years	129	.088	.143	301
		30 - 34 years	117	.078	.130	270
		35-44 years	188 [*]	.063	.003	312
		45-54 years	067	.064	.289	192
Male	under 30 years	30 - 34 years	094	.082	.254	256
		35-44 years	003	.078	.970	156
		45-54 years	013	.077	.863	164
		55 years or more	010	.079	.901	166
	30 - 34 years	under 30 years	.094	.082	.254	068
		35-44 years	.091	.065	.162	037
		45-54 years	.081	.064	.206	045
		55 years or more	.084	.067	.208	047
	35-44 years	under 30 years	.003	.078	.970	150
		30 - 34 years	091	.065	.162	219
		45-54 years	010	.057	.857	123
		55 years or more	007	.060	.909	125
	45-54 years	under 30 years	.013	.077	.863	137
		30 - 34 years	081	.064	.206	206
		35-44 years	.010	.057	.857	102

55 years or more	.003	.059	.954	112
55 years or more under 30 years	.010	.079	.901	146
30 - 34 years	084	.067	.208	215
35-44 years	.007	.060	.909	111
45-54 years	003	.059	.954	119

Pairwise Comparisons

[t1] The respondent's gender	(I) [t2] The respondent's age group (categorised by researcher)	(J) [t2] The respondent's age group (categorised by researcher)	95% Confidence Interval for Difference Upper Bound
Female	under 30 years	30 - 34 years	.195
		35-44 years	.103
		45-54 years	.224
		55 years or more	.301
	30 - 34 years	under 30 years	.173
		35-44 years	.070
		45-54 years	.192
		55 years or more	.270
	35-44 years	under 30 years	.221
		30 - 34 years	.211
		45-54 years	.231
		55 years or more	.312
	45-54 years	under 30 years	.102
		30 - 34 years	.091
		35-44 years	010
		55 years or more	.192
	55 years or more	under 30 years	.044
		30 - 34 years	.035
		35-44 years	064

		45-54 years	.057
Male	under 30 years	30 - 34 years	.068
		35-44 years	.150
		45-54 years	.137
		55 years or more	.146
	30 - 34 years	under 30 years	.256
		35-44 years	.219
		45-54 years	.206
		55 years or more	.215
	35-44 years	under 30 years	.156
		30 - 34 years	.037
		45-54 years	.102
		55 years or more	.111
	45-54 years	under 30 years	.164
		30 - 34 years	.045
		35-44 years	.123
		55 years or more	.119
	55 years or more	under 30 years	.166
		30 - 34 years	.047
		35-44 years	.125
		45-54 years	.112

Based on estimated marginal means
*. The mean difference is significant at the .050 level.

b. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).

Univariate Tests

Dependent Variable: Expanded Empowerment Index

[t1] The respond	dent's gender	Sum of Squares	df	Mean Square	F	Sig.
Female	Contrast	3.149	4	.787	2.470	.043
	Error	499.438	1567	.319		
Male	Contrast	.802	4	.200	.629	.642
	Error	499.438	1567	.319		

Each F tests the simple effects of [t2] The respondent's age group (categorised by researcher) within each level combination of the other effects shown. These tests are based on the linearly independent pairwise comparisons among the estimated marginal means.

```
GLM ExpandedEmpowermentIndex BY tyyppi t1 t4 WITH t2 q16_5pt

/DESIGN = tyyppi t1 t4 tyyppi*t1 tyyppi*t4 t1*t4 tyyppi*t1*t4 t2 q16_5pt

/PRINT = PARAMETER

/EMMEANS = TABLES(tyyppi*t1*t4) COMPARE(tyyppi) COMPARE(t1) COMPARE(t4)

/EMMEANS = TABLES(t1*t4) COMPARE(t1) COMPARE(t4).
```

General Linear Model

Notes

Output Created	07-SEP-2024 12:14:13
----------------	----------------------

Comments		
Input	Active Dataset	DataSet1
	Filter	<none></none>
	Weight	<none></none>
	Split File	<none></none>
	N of Rows in Working Data File	1597
Missing Value Handling	Definition of Missing	User-defined missing values are treated as missing.
	Cases Used	Statistics are based on all cases with valid data for all variables in the model.
Syntax		GLM ExpandedEmpowermentIndex BY tyyppi t1 t4 WITH t2 q16_5pt /DESIGN = tyyppi t1 t4 tyyppi*t1 tyyppi*t4 t1*t4 tyyppi*t1*t4 t2 q16_5pt /PRINT = PARAMETER /EMMEANS = TABLES(tyyppi*t1*t4) COMPARE(tyyppi) COMPARE(t1) COMPARE(t4) /EMMEANS = TABLES(t1*t4) COMPARE(t1) COMPARE(t4).
Resources	Processor Time	00:00:00.13
	Elapsed Time	00:00:00.22

Between-Subjects Factors

	Value Label	N
--	-------------	---

Ituanil To which group (toot or	0	Control group	1000
[tyyppi] To which group (test or		Control group	1023
control group) does the respondent belong:	1	Test group	566
[t1] The respondent's gender	1	Female	761
	2	Male	828
[t4] The respondent's highest	1	Primary or lower	278
level of education		secondary	
		education	
	2	Upper secondary	640
		education	
		(vocational)	
	3	Upper secondary	124
		education	
		(general)	
	4	College level	165
		vocational	
		education	
	5	Polytechnic/univer	171
		sity of applied	
		sciences	
		education	
	6	University or other	211
		higher education	

Tests of Between-Subjects Effects

	Type III Sum of				
Source	Squares	df	Mean Square	F	Sig.
Corrected Model	517.277 ^a	25	20.691	65.097	<.001
Intercept	315.912	1	315.912	993.897	<.001
tyyppi	7.957	1	7.957	25.034	<.001
t1	.890	1	.890	2.800	.094
t4	1.263	5	.253	.795	.553

tyyppi * t1	.040	1	.040	.125	.723
tyyppi * t4	1.240	5	.248	.780	.564
t1 * t4	3.692	5	.738	2.323	.041
tyyppi * t1 * t4	1.221	5	.244	.769	.572
t2	.629	1	.629	1.980	.160
q16_5pt	410.128	1	410.128	1290.312	<.001
Error	496.802	1563	.318		
Total	20489.863	1589			
Corrected Total	1014.079	1588			
D 0 1 540 /	(A I' 1 ID O	I 500\	·	·	·

a. R Squared = .510 (Adjusted R Squared = .502)

Parameter Estimates

					95% Confidence Interval	
Parameter	В	Std. Error	t	Sig.	Lower Bound	Upper Bound
Intercept	2.232	.115	19.356	<.001	2.006	2.458
[tyyppi=0]	282	.118	-2.387	.017	514	050
[tyyppi=1]	0 ^a					
[t1=1]	.018	.123	.145	.885	223	.259
[t1=2]	0 ^a					
[t4=1]	069	.119	579	.562	301	.164
[t4=2]	112	.106	-1.064	.288	319	.095
[t4=3]	130	.157	827	.408	437	.178
[t4=4]	228	.138	-1.657	.098	498	.042
[t4=5]	.088	.148	.598	.550	202	.379
[t4=6]	0 ^a					
[tyyppi=0] * [t1=1]	.150	.159	.944	.345	162	.462

[tyyppi=0] * [t1=2]	O ^a					
[tyyppi=1] * [t1=1]	0 ^a					
[tyyppi=1] * [t1=2]	0 ^a					
[tyyppi=0] * [t4=1]	.019	.149	.129	.898	273	.311
[tyyppi=0] * [t4=2]	.136	.134	1.015	.310	127	.399
[tyyppi=0] * [t4=3]	.182	.190	.957	.338	191	.556
[tyyppi=0] * [t4=4]	.362	.177	2.038	.042	.014	.710
[tyyppi=0] * [t4=5]	.020	.184	.108	.914	342	.382
[tyyppi=0] * [t4=6]	0 ^a					
[tyyppi=1] * [t4=1]	0 ^a					
[tyyppi=1] * [t4=2]	0 ^a					
[tyyppi=1] * [t4=3]	0 ^a					
[tyyppi=1] * [t4=4]	0 ^a					
[tyyppi=1] * [t4=5]	0 ^a					
[tyyppi=1] * [t4=6]	0 ^a					
[t1=1] * [t4=1]	011	.174	061	.951	353	.331
[t1=1] * [t4=2]	.132	.143	.920	.358	149	.412
[t1=1] * [t4=3]	.170	.226	.752	.452	273	.612
[t1=1] * [t4=4]	.242	.195	1.242	.215	140	.625
[t1=1] * [t4=5]	214	.192	-1.115	.265	592	.163
[t1=1] * [t4=6]	0 ^a				-	
[t1=2] * [t4=1]	0 ^a					
[t1=2] * [t4=2]	O ^a					
[t1=2] * [t4=3]	O ^a					
[t1=2] * [t4=4]	O ^a					
[t1=2] * [t4=5]	0 ^a					

[t1=2] * [t4=6]	O ^a					
[tyyppi=0] * [t1=1] * [t4=1]	102	.219	466	.642	530	.327
[tyyppi=0] * [t1=1] * [t4=2]	112	.184	610	.542	474	.249
[tyyppi=0] * [t1=1] * [t4=3]	319	.275	-1.160	.246	859	.221
[tyyppi=0] * [t1=1] * [t4=4]	420	.246	-1.706	.088	902	.063
[tyyppi=0] * [t1=1] * [t4=5]	096	.243	396	.692	572	.380
[tyyppi=0] * [t1=1] * [t4=6]	O ^a					
[tyyppi=0] * [t1=2] * [t4=1]	O ^a					
[tyyppi=0] * [t1=2] * [t4=2]	O ^a					
[tyyppi=0] * [t1=2] * [t4=3]	O ^a					
[tyyppi=0] * [t1=2] * [t4=4]	O ^a					
[tyyppi=0] * [t1=2] * [t4=5]	O ^a					
[tyyppi=0] * [t1=2] * [t4=6]	O ^a					
[tyyppi=1] * [t1=1] * [t4=1]	O ^a					
[tyyppi=1] * [t1=1] * [t4=2]	O ^a			-		
[tyyppi=1] * [t1=1] * [t4=3]	O ^a					
[tyyppi=1] * [t1=1] * [t4=4]	O ^a					
[tyyppi=1] * [t1=1] * [t4=5]	O ^a					
[tyyppi=1] * [t1=1] * [t4=6]	O ^a					
[tyyppi=1] * [t1=2] * [t4=1]	O ^a					
[tyyppi=1] * [t1=2] * [t4=2]	O ^a					
[tyyppi=1] * [t1=2] * [t4=3]	0 ^a					
[tyyppi=1] * [t1=2] * [t4=4]	0 ^a					
[tyyppi=1] * [t1=2] * [t4=5]	O ^a					
[tyyppi=1] * [t1=2] * [t4=6]	O ^a					

t2	017	.012	-1.407	.160	041	.007
q16_5pt	.375	.010	35.921	<.001	.354	.395

a. This parameter is set to zero because it is redundant.

Estimated Marginal Means

1. [tyyppi] To which group (test or control group) does the respondent belong: * [t1] The respondent's gender * [t4] The respondent's highest level of education

Estimates

[tyyppi] To which					95% Confide	nce Interval
group (test or control		[t4] The respondent's				
group) does the	[t1] The respondent's	highest level of		Std.	Lower	Upper
respondent belong:	gender	education	Mean	Error	Bound	Bound
Control group	Female	Primary or lower secondary education	3.376 ^a	.066	3.247	3.506
		Upper secondary education (vocational)	3.581 ^a	.041	3.500	3.663
		Upper secondary education (general)	3.441 ^a	.091	3.262	3.621
		College level vocational education	3.495 ^a	.070	3.356	3.633

		Polytechnic/university of applied sciences education	3.336ª	.071	3.197	3.476
		University or other higher education	3.538 ^a	.070	3.402	3.675
	Male	Primary or lower secondary education	3.321 ^a	.053	3.216	3.426
		Upper secondary education (vocational)	3.394 ^a	.038	3.319	3.469
		Upper secondary education (general)	3.423 ^a	.080	3.266	3.580
		College level vocational education	3.504 ^a	.085	3.337	3.671
		Polytechnic/university of applied sciences education	3.479 ^a	.083	3.317	3.641
		University or other higher education	3.371 ^a	.074	3.226	3.515
Test group	Female	Primary or lower secondary education	3.591 ^a	.100	3.395	3.787
		Upper secondary education (vocational)	3.690 ^a	.054	3.584	3.796
		Upper secondary education (general)	3.711 ^a	.141	3.434	3.987
		College level vocational education	3.685 ^a	.113	3.463	3.906
		Polytechnic/university of applied sciences education	3.545 ^a	.093	3.363	3.727
		University or other higher education	3.671 ^a	.081	3.512	3.829
	Male	Primary or lower secondary education	3.584 ^a	.074	3.440	3.728
		Upper secondary education (vocational)	3.540 ^a	.050	3.442	3.639

Upper secondary education (general)	3.523 ^a	.126	3.276	3.771
College level vocational education	3.425 ^a	.102	3.225	3.624
Polytechnic/university of applied sciences education	3.741 ^a	.115	3.515	3.968
University or other higher education	3.653 ^a	.093	3.471	3.835

a. Covariates appearing in the model are evaluated at the following values: [t2] The respondent's age group (categorised by researcher) = 3.39, q16_5pt = 3.9465.

Pairwise Comparisons

[tyyppi] To which group (test or control group)		(I) [t4] The	(J) [t4] The				95% Confidence Interval for Difference ^b	
does the	[t1] The	respondent's	respondent's	Mean				
respondent	respondent's	highest level of	highest level of	Differenc	Std.	o: h	Lower	Upper
belong:	gender	education	education	e (I-J)	Error	Sig. ^b	Bound	Bound
Control group	Female	Primary or lower secondary education	Upper secondary education (vocational)	205 [*]	.078	.008	357	053
			Upper secondary education (general)	065	.113	.565	286	.156
			College level vocational education	118	.096	.220	307	.071
			Polytechnic/univ ersity of applied	.040	.097	.680	151	.231

		sciences education					
		University or other higher education	162	.096	.093	351	.027
	Upper secondary education	Primary or lower secondary education	.205*	.078	.008	.053	.357
	(vocational)	Upper secondary education (general)	.140	.100	.163	057	.337
		College level vocational education	.087	.082	.289	074	.247
		Polytechnic/univ ersity of applied sciences education	.245*	.082	.003	.083	.407
		University or other higher education	.043	.081	.597	116	.202
	Upper secondary education	Primary or lower secondary education	.065	.113	.565	156	.286
	(general)	Upper secondary education (vocational)	140	.100	.163	337	.057
		College level vocational education	053	.115	.645	280	.173
		Polytechnic/univ ersity of applied sciences education	.105	.116	.364	122	.333

	University or other higher education	097	.115	.399	323	.129
College level vocational education	Primary or lower secondary education	.118	.096	.220	071	.307
	Upper secondary education (vocational)	087	.082	.289	247	.074
	Upper secondary education (general)	.053	.115	.645	173	.280
	Polytechnic/univ ersity of applied sciences education	.158	.100	.114	038	.355
	University or other higher education	044	.099	.659	238	.151
Polytechnic/univ ersity of applied sciences	Primary or lower secondary education	040	.097	.680	231	.151
education	Upper secondary education (vocational)	245 [*]	.082	.003	407	083
	Upper secondary education (general)	105	.116	.364	333	.122
	College level vocational education	158	.100	.114	355	.038

		University or	c *	.099	.042	397	007
		other higher education	202*	.099	.042	391	007
	University or other higher education	Primary or lower secondary education	.162	.096	.093	027	.351
		Upper secondary education (vocational)	043	.081	.597	202	.116
		Upper secondary education (general)	.097	.115	.399	129	.323
		College level vocational education	.044	.099	.659	151	.238
		Polytechnic/univ ersity of applied sciences education	.202*	.099	.042	.007	.397
Male	Primary or lower secondary education	Upper secondary education (vocational)	073	.066	.265	202	.056
		Upper secondary education (general)	102	.097	.290	292	.087
	C V	College level vocational education	183	.100	.068	380	.014
		Polytechnic/univ ersity of applied sciences education	158	.099	.111	352	.036

	University or other higher education	050	.091	.588	229	.130
Upper secondary education	Primary or lower secondary education	.073	.066	.265	056	.202
(vocational)	Upper secondary education (general)	029	.089	.744	203	.145
	College level vocational education	110	.093	.239	293	.073
	Polytechnic/univ ersity of applied sciences education	085	.091	.353	264	.094
	University or other higher education	.024	.083	.776	139	.187
Upper secondary education	Primary or lower secondary education	.102	.097	.290	087	.292
(general)	Upper secondary education (vocational)	.029	.089	.744	145	.203
	College level vocational education	081	.117	.489	310	.149
	Polytechnic/univ ersity of applied sciences education	056	.115	.627	281	.169

		0.55	100			
	University or other higher education	.053	.109	.628	160	.266
College level vocational education	Primary or lower secondary education	.183	.100	.068	014	.380
	Upper secondary education (vocational)	.110	.093	.239	073	.293
	Upper secondary education (general)	.081	.117	.489	149	.310
	Polytechnic/univ ersity of applied sciences education	.025	.119	.833	208	.258
	University or other higher education	.134	.113	.236	087	.354
Polytechnic/univ ersity of applied sciences	Primary or lower secondary education	.158	.099	.111	036	.352
education	Upper secondary education (vocational)	.085	.091	.353	094	.264
	Upper secondary education (general)	.056	.115	.627	169	.281
	College level vocational education	025	.119	.833	258	.208

			University or other higher education	.108	.110	.327	108	.325
		University or other higher education	Primary or lower secondary education	.050	.091	.588	130	.229
			Upper secondary education (vocational)	024	.083	.776	187	.139
			Upper secondary education (general)	053	.109	.628	266	.160
			College level vocational education	134	.113	.236	354	.087
			Polytechnic/univ ersity of applied sciences education	108	.110	.327	325	.108
Test group	Female	Primary or lower secondary education	Upper secondary education (vocational)	099	.114	.385	321	.124
			Upper secondary education (general)	119	.173	.490	458	.219
			College level vocational education	094	.151	.535	389	.202
			Polytechnic/univ ersity of applied sciences education	.047	.136	.732	221	.314

	University or other higher education	079	.129	.537	332	.173
Upper secondary education	Primary or lower secondary education	.099	.114	.385	124	.321
(vocational)	Upper secondary education (general)	021	.151	.892	317	.276
	College level vocational education	.005	.125	.967	240	.251
	Polytechnic/univ ersity of applied sciences education	.145	.107	.175	065	.356
	University or other higher education	.019	.097	.842	171	.210
Upper secondary education	Primary or lower secondary education	.119	.173	.490	219	.458
(general)	Upper secondary education (vocational)	.021	.151	.892	276	.317
	College level vocational education	.026	.181	.887	328	.380
	Polytechnic/univ ersity of applied sciences education	.166	.169	.326	165	.497

	University or other higher education	.040	.162	.806	279	.359
College level vocational education	Primary or lower secondary education	.094	.151	.535	202	.389
	Upper secondary education (vocational)	005	.125	.967	251	.240
	Upper secondary education (general)	026	.181	.887	380	.328
	Polytechnic/univ ersity of applied sciences education	.140	.146	.337	146	.427
	University or other higher education	.014	.139	.919	258	.286
Polytechnic/uni ersity of applied sciences	•	047	.136	.732	314	.221
education	Upper secondary education (vocational)	145	.107	.175	356	.065
	Upper secondary education (general)	166	.169	.326	497	.165
	College level vocational education	140	.146	.337	427	.146

		University or other higher education	126	.123	.305	367	.115
	University or other higher education	Primary or lower secondary education	.079	.129	.537	173	.332
		Upper secondary education (vocational)	019	.097	.842	210	.171
		Upper secondary education (general)	040	.162	.806	359	.279
		College level vocational education	014	.139	.919	286	.258
		Polytechnic/univ ersity of applied sciences education	.126	.123	.305	115	.367
Male	Primary or lower secondary education	Upper secondary education (vocational)	.044	.089	.625	131	.219
		Upper secondary education (general)	.061	.146	.676	225	.347
		College level vocational education	.159	.125	.203	086	.405
		Polytechnic/univ ersity of applied sciences education	157	.137	.252	426	.112

	University or other higher education	069	.119	.562	301	.164
Upper secondary education	Primary or lower secondary education	044	.089	.625	219	.131
(vocational)	Upper secondary education (general)	.017	.136	.898	249	.284
	College level vocational education	.116	.114	.308	107	.339
	Polytechnic/univ ersity of applied sciences education	201	.126	.110	447	.046
	University or other higher education	112	.106	.288	319	.095
Upper secondary education	Primary or lower secondary education	061	.146	.676	347	.225
(general)	Upper secondary education (vocational)	017	.136	.898	284	.249
	College level vocational education	.098	.162	.544	220	.417
	Polytechnic/univ ersity of applied sciences education	218	.171	.202	553	.117

		University or other higher	130	.157	.408	437	.178
		education		105		10-	
Voca	lege level ational ıcation	Primary or lower secondary education	159	.125	.203	405	.086
		Upper secondary education (vocational)	116	.114	.308	339	.107
		Upper secondary education (general)	098	.162	.544	417	.220
		Polytechnic/univ ersity of applied sciences education	317 [*]	.154	.040	619	014
		University or other higher education	228	.138	.098	498	.042
ersit	ytechnic/univ ity of applied ences	Primary or lower secondary education	.157	.137	.252	112	.426
edud	ıcation	Upper secondary education (vocational)	.201	.126	.110	046	.447
	se ec	Upper secondary education (general)	.218	.171	.202	117	.553
		College level vocational education	.317*	.154	.040	.014	.619

	University or other higher education	.088	.148	.550	202	.379
University or other higher education	Primary or lower secondary education	.069	.119	.562	164	.301
	Upper secondary education (vocational)	.112	.106	.288	095	.319
	Upper secondary education (general)	.130	.157	.408	178	.437
	College level vocational education	.228	.138	.098	042	.498
	Polytechnic/univ ersity of applied sciences education	088	.148	.550	379	.202

Based on estimated marginal means

Univariate Tests

[tyyppi] To which group (test or control group) does the					
respondent belong:	[t1] The response	ondent's gender	Sum of Squares	df	Mean Square
Control group	Female	Contrast	4.243	5	.849
		Error	496.802	1563	.318
	Male	Contrast	1.527	5	.305

^{*.} The mean difference is significant at the .050 level.

b. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).

		Error	496.802	1563	.318
Test group	Female	Contrast	.798	5	.160
		Error	496.802	1563	.318
	Male	Contrast	1.760	5	.352
		Error	496.802	1563	.318

Univariate Tests

Dependent Variable: Expanded Empowerment Index

[tyyppi] To which group (test or control group) does the

control group) does the				
respondent belong:	[t1] The resp	ondent's gender	F	Sig.
Control group	Female	Contrast	2.670	.021
		Error		
	Male	Contrast	.961	.440
		Error		
Test group	Female	Contrast	.502	.775
		Error		
	Male	Contrast	1.107	.354
		Error		

Each F tests the simple effects of [t4] The respondent's highest level of education within each level combination of the other effects shown. These tests are based on the linearly independent pairwise comparisons among the estimated marginal means.

2. [t1] The respondent's gender * [t4] The respondent's highest level of education

Estimates

	[t4] The respondent's highest			95% Confidence Interval
[t1] The respondent's gender	level of education	Mean	Std. Error	Lower Bound
Female	Primary or lower secondary education	3.484ª	.060	3.366
	Upper secondary education (vocational)	3.636 ^a	.034	3.569
	Upper secondary education (general)	3.576 ^a	.084	3.411
	College level vocational education	3.590 ^a	.067	3.459
	Polytechnic/university of applied sciences education	3.440 ^a	.058	3.326
	University or other higher education	3.605 ^a	.053	3.500
Male	Primary or lower secondary education	3.453 ^a	.046	3.363
	Upper secondary education (vocational)	3.467 ^a	.032	3.405
	Upper secondary education (general)	3.473ª	.075	3.327
	College level vocational education	3.464 ^a	.066	3.334
	Polytechnic/university of applied sciences education	3.610 ^a	.071	3.470

University or other higher education	3.512 ^a	.059	3.395
--------------------------------------	--------------------	------	-------

Estimates

Dependent variable. Expanded	[t4] The respondent's highest	95% Confidence Interval
[t1] The respondent's gender	level of education	Upper Bound
Female	Primary or lower secondary education	3.602
	Upper secondary education (vocational)	3.702
	Upper secondary education (general)	3.741
	College level vocational education	3.721
	Polytechnic/university of applied sciences education	3.555
	University or other higher education	3.709
Male	Primary or lower secondary education	3.542
	Upper secondary education (vocational)	3.529
	Upper secondary education (general)	3.620
	College level vocational education	3.595
	Polytechnic/university of applied sciences education	3.750
	University or other higher education	3.628

a. Covariates appearing in the model are evaluated at the following values: [t2] The respondent's age group (categorised by researcher) = 3.39, q16_5pt = 3.9465.

Pairwise Comparisons

[t1] The	(I) [t4] The respondent's	(J) [t4] The respondent's	Mean			95% Con Interval for D	
respondent's gender	highest level of education	highest level of education	Difference (I-J)	Std. Error	Sig.b	Lower Bound	Upper Bound
Female	Primary or lower secondary education	Upper secondary education (vocational)	152 [*]	.069	.028	287	017
		Upper secondary education (general)	092	.103	.372	295	.110
		College level vocational education	106	.090	.238	282	.070
		Polytechnic/universi ty of applied sciences education	.043	.084	.606	122	.208
		University or other higher education	121	.081	.136	279	.038
	Upper secondary education (vocational)	Primary or lower secondary education	.152*	.069	.028	.017	.287
		Upper secondary education (general)	.060	.091	.510	118	.238

College level vocational education							
ty of applied sciences education University or other higher education Upper secondary education (general) Upper secondary education (vocational) College level vocational education Polytechnic/universi 136 .102 .186065 .336 ty of applied sciences education University or other higher education College level Primary or lower 106 .090 .238070 .282 vocational education University or other higher education Upper secondary education education Upper secondary education e		vocational	.046	.075	.540	101	.193
Nigher education Upper secondary education (general)		ty of applied	.195*	.068	.004	.063	.328
Polytechnic/university of applied secondary education Polytechnic/university or other higher education Polytechnic/university of applied sciences education Polytechnic/university of applied sciences education Polytechnic/university or other .015			.031	.063	.623	093	.156
College level vocational education Polytechnic/universi ty of applied secondary education Primary or lower vocational education Polytechnic/universi ty or other higher education Polytechnic/universi ty of applied sciences education University or other higher education College level vocational secondary education Primary or lower vocational secondary education Upper secondary education Upper secondary education Polytechnic/universi ty of applied sciences education Vocational vocation (vocational) Victorial vocational vocational vocation vocational vocational vocation v	* *) secondary	.092	.103	.372	110	.295
Vocational education		education	060	.091	.510	238	.118
ty of applied sciences education University or other higher education College level vocational secondary education Upper secondary education Upper secondary education Upper secondary education Upper secondary education (vocational) Upper secondary education (general) Polytechnic/universi ty of applied sciences education University or other Vocational University or other 029 .100 .775224 .167 .090 .238070 .282 085 .540193 .101 085 .540193 .101 085 .862182 .153		vocational	014	.107	.898	224	.197
Nigher education College level Primary or lower vocational secondary education Upper secondary education Upper secondary education (vocational) Upper secondary education (vocational) Upper secondary education (vocational) Polytechnic/universi vof applied vof		ty of applied	.136	.102	.186	065	.336
vocational education secondary education Upper secondary education (vocational) 046 .075 .540 193 .101 Upper secondary education (general) .014 .107 .898 197 .224 Polytechnic/universi ty of applied sciences education .149 .089 .093 025 .323 University or other 015 .085 .862 182 .153		•	029	.100	.775	224	.167
education (vocational) Upper secondary education (general) Polytechnic/universi 149 .089 .093025 .323 ty of applied sciences education University or other015 .085 .862182 .153	vocational	secondary	.106	.090	.238	070	.282
education (general) Polytechnic/universi		education	046	.075	.540	193	.101
ty of applied sciences education University or other015 .085 .862182 .153			.014	.107	.898	197	.224
		ty of applied	.149	.089	.093	025	.323
			015	.085	.862	182	.153

	Polytechnic/university of applied sciences education	secondary	043	.084	.606	208	.122
		Upper secondary education (vocational)	195 [*]	.068	.004	328	063
		Upper secondary education (general)	136	.102	.186	336	.065
		College level vocational education	149	.089	.093	323	.025
		University or other higher education	164 [*]	.079	.038	319	009
	University or other higher education	Primary or lower secondary education	.121	.081	.136	038	.279
		Upper secondary education (vocational)	031	.063	.623	156	.093
		Upper secondary education (general)	.029	.100	.775	167	.224
		College level vocational education	.015	.085	.862	153	.182
		Polytechnic/universi ty of applied sciences education	.164 [*]	.079	.038	.009	.319
Male	Primary or lower secondary education	Upper secondary education (vocational)	015	.056	.790	124	.094
		Upper secondary education (general)	021	.088	.814	193	.151
		College level vocational education	012	.080.	.883	169	.146

		Polytechnic/universi ty of applied sciences education	158	.085	.065	325	.010
		University or other higher education	059	.075	.432	207	.088
edu	per secondary ucation cational)	Primary or lower secondary education	.015	.056	.790	094	.124
		Upper secondary education (general)	006	.081	.943	165	.153
		College level vocational education	.003	.074	.968	142	.148
		Polytechnic/universi ty of applied sciences education	143	.078	.067	295	.010
		University or other higher education	044	.067	.511	176	.088
	per secondary ucation (general)	Primary or lower secondary education	.021	.088	.814	151	.193
		Upper secondary education (vocational)	.006	.081	.943	153	.165
		College level vocational education	.009	.100	.930	188	.205
		Polytechnic/universi ty of applied sciences education	137	.103	.184	339	.065
		University or other higher education	039	.095	.687	226	.149
VOC	lege level ational ucation	Primary or lower secondary education	.012	.080	.883	146	.169

	Upper secondary education (vocational)	003	.074	.968	148	.142
	Upper secondary education (general)	009	.100	.930	205	.188
	Polytechnic/universi ty of applied sciences education	146	.098	.137	338	.046
	University or other higher education	047	.089	.595	222	.127
Polytechnic/universi ty of applied sciences education	secondary	.158	.085	.065	010	.325
	Upper secondary education (vocational)	.143	.078	.067	010	.295
	Upper secondary education (general)	.137	.103	.184	065	.339
	College level vocational education	.146	.098	.137	046	.338
	University or other higher education	.098	.093	.288	083	.280
University or other higher education	Primary or lower secondary education	.059	.075	.432	088	.207
	Upper secondary education (vocational)	.044	.067	.511	088	.176
	Upper secondary education (general)	.039	.095	.687	149	.226
	College level vocational education	.047	.089	.595	127	.222

Polytechnic/universi ty of applied sciences education	098	.093	.288	280	.083

Based on estimated marginal means

- *. The mean difference is significant at the .050 level.
- b. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).

Univariate Tests

Dependent Variable: Expanded Empowerment Index

[t1] The respondent's gender		Sum of Squares	df	Mean Square	F	Sig.
Female	Contrast	3.559	5	.712	2.240	.048
	Error	496.802	1563	.318		
Male	Contrast	1.319	5	.264	.830	.528
	Error	496.802	1563	.318		

Each F tests the simple effects of [t4] The respondent's highest level of education within each level combination of the other effects shown. These tests are based on the linearly independent pairwise comparisons among the estimated marginal means.

```
* Select only the test group.

*SELECT IF (tyyppi = 1).

GLM ExpandedEmpowermentIndex BY tyyppi t1 t6 WITH t2 q16_5pt

/DESIGN = tyyppi t1 t6 tyyppi*t1 tyyppi*t6 t1*t6 tyyppi*t1*t6 t2 q16_5pt

/PRINT = PARAMETER

/EMMEANS = TABLES(tyyppi*t1*t6) COMPARE(tyyppi) COMPARE(t1) COMPARE(t6)

/EMMEANS = TABLES(t1*t6) COMPARE(t1) COMPARE(t6).
```

General Linear Model

Notes

Output Created		07-SEP-2024 12:14:13
Comments		
Input	Active Dataset	DataSet1
	Filter	<none></none>
	Weight	<none></none>
	Split File	<none></none>
	N of Rows in Working Data File	1597
Missing Value Handling	Definition of Missing	User-defined missing values
		are treated as missing.
	Cases Used	Statistics are based on all
		cases with valid data for all variables in the model.
0		
Syntax		GLM ExpandedEmpowermentIndex
		BY tyyppi t1 t6 WITH t2
		q16_5pt
		/DESIGN = tyyppi t1 t6
		tyyppi*t1 tyyppi*t6 t1*t6
		tyyppi*t1*t6 t2 q16_5pt
		/PRINT = PARAMETER /EMMEANS =
		TABLES(tyyppi*t1*t6)
		COMPARE(tyyppi)
		COMPARE(t1) COMPARE(t6)
		/EMMEANS = TABLES(t1*t6)

		COMPARE(t1) COMPARE(t6).
Resources	Processor Time	00:00:00.11
	Elapsed Time	00:00:00.19

Between-Subjects Factors

		Value Label	N
[tyyppi] To which group (test or	0	Control group	1023
control group) does the respondent belong:	1	Test group	566
[t1] The respondent's gender	1	Female	761
	2	Male	828
[t6] The respondent's household composition	1	One-person household	696
	2	Married/cohabitin g couple with no children	294
	3	(Other) all-adult household (all aged over 18)	114
	4	Household with children	483
	5	Doesn't want to	2
		say	

Tests of Between-Subjects Effects

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	520.466ª	18	28.915	91.967	<.001
Intercept	204.436	1	204.436	650.235	<.001

tyyppi	9.343	1	9.343	29.717	<.001
t1	1.677	1	1.677	5.334	.021
t6	7.352	4	1.838	5.846	<.001
tyyppi * t1	.090	1	.090	.285	.594
tyyppi * t6	1.077	3	.359	1.142	.331
t1 * t6	.715	3	.238	.758	.518
tyyppi * t1 * t6	2.047	3	.682	2.170	.090
t2	.377	1	.377	1.199	.274
q16_5pt	416.736	1	416.736	1325.483	<.001
Error	493.613	1570	.314		
Total	20489.863	1589			
Corrected Total	1014.079	1588			
	4 1 1 1 0 0	. 500)			

a. R Squared = .513 (Adjusted R Squared = .508)

Parameter Estimates

					95% Confidence Interval	
Parameter	В	Std. Error	t	Sig.	Lower Bound	Upper Bound
Intercept	2.005	.413	4.851	<.001	1.194	2.816
[tyyppi=0]	300	.088	-3.425	<.001	472	128
[tyyppi=1]	0 ^a					
[t1=1]	044	.084	517	.605	209	.122
[t1=2]	0 ^a	-				
[t6=1]	.060	.409	.146	.884	743	.862
[t6=2]	.193	.413	.467	.640	618	1.004
[t6=3]	.024	.423	.057	.955	806	.854
[t6=4]	.315	.401	.787	.432	471	1.102

[t6=5]	0ª				-	
[tyyppi=0] * [t1=1]	.215	.109	1.970	.049	.001	.429
[tyyppi=0] * [t1=2]	0 ^a					
[tyyppi=1] * [t1=1]	O ^a					
[tyyppi=1] * [t1=2]	0 ^a					
[tyyppi=0] * [t6=1]	.186	.104	1.784	.075	018	.390
[tyyppi=0] * [t6=2]	.160	.129	1.237	.216	094	.414
[tyyppi=0] * [t6=3]	.129	.174	.737	.461	213	.471
[tyyppi=0] * [t6=4]	0 ^a					
[tyyppi=0] * [t6=5]	0 ^a					
[tyyppi=1] * [t6=1]	O ^a					
[tyyppi=1] * [t6=2]	0 ^a					
[tyyppi=1] * [t6=3]	O ^a					
[tyyppi=1] * [t6=4]	O ^a					
[t1=1] * [t6=1]	.094	.114	.825	.409	130	.318
[t1=1] * [t6=2]	.159	.142	1.117	.264	120	.438
[t1=1] * [t6=3]	.340	.188	1.811	.070	028	.709
[t1=1] * [t6=4]	0 ^a					
[t1=2] * [t6=1]	0ª				-	
[t1=2] * [t6=2]	0ª					
[t1=2] * [t6=3]	0 ^a					
[t1=2] * [t6=4]	O ^a					
[t1=2] * [t6=5]	O ^a					
[tyyppi=0] * [t1=1] * [t6=1]	208	.144	-1.445	.149	491	.074
[tyyppi=0] * [t1=1] * [t6=2]	414	.178	-2.327	.020	763	065
[tyyppi=0] * [t1=1] * [t6=3]	394	.241	-1.634	.102	867	.079

[tyyppi=0] * [t1=1] * [t6=4]	0 ^a					
[tyyppi=0] * [t1=2] * [t6=1]	0 ^a				-	
[tyyppi=0] * [t1=2] * [t6=2]	0 ^a		-			-
[tyyppi=0] * [t1=2] * [t6=3]	0 ^a					
[tyyppi=0] * [t1=2] * [t6=4]	0ª					
[tyyppi=0] * [t1=2] * [t6=5]	0 ^a					
[tyyppi=1] * [t1=1] * [t6=1]	0 ^a					
[tyyppi=1] * [t1=1] * [t6=2]	0 ^a					
[tyyppi=1] * [t1=1] * [t6=3]	0 ^a					
[tyyppi=1] * [t1=1] * [t6=4]	0 ^a	-				
[tyyppi=1] * [t1=2] * [t6=1]	0 ^a					
[tyyppi=1] * [t1=2] * [t6=2]	0 ^a					
[tyyppi=1] * [t1=2] * [t6=3]	0 ^a	-				
[tyyppi=1] * [t1=2] * [t6=4]	0 ^a	-	-			
t2	013	.012	-1.095	.274	037	.010
q16_5pt	.371	.010	36.407	<.001	.351	.391

a. This parameter is set to zero because it is redundant.

Estimated Marginal Means

1. [tyyppi] To which group (test or control group) does the respondent belong: * [t1] The respondent's gender * [t6] The respondent's household

composition

Estimates

[tyyppi] To which group (test or control group) does the		[t6] The respondent's		
respondent belong:	[t1] The respondent's gender	household composition	Mean	Std. Error
Control group	Female	One-person household	3.427 ^a	.044
		Married/cohabiting couple with no children	3.395 ^a	.056
		(Other) all-adult household (all aged over 18)	3.394ª	.097
		Household with children	3.612 ^a	.041
		Doesn't want to say	a,b	
	Male	One-person household	3.370 ^a	.032
		Married/cohabiting couple with no children	3.478 ^a	.058
		(Other) all-adult household (all aged over 18)	3.277 ^a	.095
		Household with children	3.440 ^a	.056
		Doesn't want to say	3.125 ^a	.397
Test group	Female	One-person household	3.535 ^a	.062
		Married/cohabiting couple with no children	3.734ª	.087
		(Other) all-adult household (all aged over 18)	3.745 ^a	.120
	_	Household with children	3.697 ^a	.051

	Doesn't want to say	a,b	
Male	One-person household	3.485 ^a	.046
	Married/cohabiting couple with no children	3.618 ^a	.076
	(Other) all-adult household (all aged over 18)	3.449 ^a	.117
	Household with children	3.740 ^a	.067
	Doesn't want to say	a,b	

Estimates

[tyyppi] To which group (test or			95% Confidence Interval
control group) does the respondent belong:	[t1] The respondent's gender	[t6] The respondent's household composition	Lower Bound
Control group	Female	One-person household	3.340
0 1		Married/cohabiting couple with no children	3.286
		(Other) all-adult household (all aged over 18)	3.205
		Household with children	3.532
		Doesn't want to say	
	Male	One-person household	3.307
		Married/cohabiting couple with no children	3.365
		(Other) all-adult household (all aged over 18)	3.091
		Household with children	3.330
		Doesn't want to say	2.346
Test group	Female	One-person household	3.414
		Married/cohabiting couple with no children	3.564

	(Other) all-adult household (all aged over 18)	3.510
	Household with children	3.596
	Doesn't want to say	
Male	One-person household	3.394
	Married/cohabiting couple with no children	3.469
	(Other) all-adult household (all aged over 18)	3.219
	Household with children	3.609
	Doesn't want to say	

Estimates

[tyyppi] To which group (test or control group) does the		[t6] The respondent's	95% Confidence Interval
respondent belong:	[t1] The respondent's gender	household composition	Upper Bound
Control group	Female	One-person household	3.514
		Married/cohabiting couple with no children	3.504
		(Other) all-adult household (all aged over 18)	3.584
		Household with children	3.691
		Doesn't want to say	
	Male	One-person household	3.434
		Married/cohabiting couple with no children	3.592
		(Other) all-adult household (all aged over 18)	3.464
		Household with children	3.551
		Doesn't want to say	3.903
Test group	Female	One-person household	3.656

	Married/cohabiting couple with no children	3.903
	(Other) all-adult household (all aged over 18)	3.981
	Household with children	3.797
	Doesn't want to say	
Male	One-person household	3.575
	Married/cohabiting couple with no children	3.767
	(Other) all-adult household (all aged over 18)	3.678
	Household with children	3.872
	Doesn't want to say	

a. Covariates appearing in the model are evaluated at the following values: [t2] The respondent's age group (categorised by researcher) = 3.39, q16_5pt = 3.9465.

b. This level combination of factors is not observed, thus the corresponding population marginal mean is not estimable.

Pairwise Comparisons

[tyyppi] To which group (test or control group) does the	in [t1] The	(I) [t6] The respondent's	(J) [t6] The respondent's	Mean			95% Confidence Interval for Difference ^d	
respondent belong:	respondent's gender	household composition	household composition	Differenc e (I-J)	Std. Error	Sig. ^d	Lower Bound	Upper Bound
Control group	Female	One-person household	Married/cohabiti ng couple with no children	.033	.071	.646	107	.172
			(Other) all-adult household (all aged over 18)	.033	.106	.757	175	.241
			Household with children	184*	.061	.002	303	066
			Doesn't want to say	b				
		Married/cohabiti ng couple with	One-person household	033	.071	.646	172	.107
		no children	(Other) all-adult household (all aged over 18)	.000	.111	.998	217	.218
			Household with children	217 [*]	.069	.002	353	081
			Doesn't want to say	b				
		(Other) all-adult household (all	One-person household	033	.106	.757	241	.175
	aged over 18)	Married/cohabiti ng couple with no children	.000	.111	.998	218	.217	
			Household with children	217 [*]	.105	.039	423	011

		Doesn't want to say	.b				
	Household with children	One-person household	.184*	.061	.002	.066	.303
		Married/cohabiti ng couple with no children	.217*	.069	.002	.081	.353
		(Other) all-adult household (all aged over 18)	.217*	.105	.039	.011	.423
		Doesn't want to say	.b				
	Doesn't want to say	One-person household	. C				
		Married/cohabiti ng couple with no children	.c				
		(Other) all-adult household (all aged over 18)	. c				
		Household with children	.c				
Male	One-person household	Married/cohabiti ng couple with no children	108	.066	.104	238	.022
	(Other) all-adult household (all aged over 18)	.093	.100	.355	104	.290	
		Household with children	070	.065	.281	198	.058
		Doesn't want to say	.245	.398	.538	536	1.026
	One-person household	.108	.066	.104	022	.238	

Married/cohabiti ng couple with no children	(Other) all-adult household (all aged over 18)	.201	.111	.071	018	.419
	Household with children	.038	.081	.640	121	.196
	Doesn't want to say	.353	.401	.379	434	1.140
(Other) all-adult household (all	One-person household	093	.100	.355	290	.104
aged over 18)	Married/cohabiti ng couple with no children	201	.111	.071	419	.018
	Household with children	163	.111	.140	380	.054
	Doesn't want to say	.152	.408	.709	648	.953
Household with children	One-person household	.070	.065	.281	058	.198
	Married/cohabiti ng couple with no children	038	.081	.640	196	.121
	(Other) all-adult household (all aged over 18)	.163	.111	.140	054	.380
	Doesn't want to say	.315	.401	.432	471	1.102
Doesn't want to say	One-person household	245	.398	.538	-1.026	.536
	Married/cohabiti ng couple with no children	353	.401	.379	-1.140	.434
	(Other) all-adult household (all aged over 18)	152	.408	.709	953	.648

			Household with children	315	.401	.432	-1.102	.471
Test group	Female	One-person household	Married/cohabiti ng couple with no children	198	.106	.062	407	.010
			(Other) all-adult household (all aged over 18)	210	.135	.119	475	.054
			Household with children	162 [*]	.080	.044	319	005
			Doesn't want to say	.b				
		Married/cohabiti ng couple with	One-person household	.198	.106	.062	010	.407
		no children	(Other) all-adult household (all aged over 18)	012	.148	.937	302	.278
			Household with children	.037	.101	.715	161	.234
			Doesn't want to say	b				
		(Other) all-adult household (all	One-person household	.210	.135	.119	054	.475
		aged over 18)	Married/cohabiti ng couple with no children	.012	.148	.937	278	.302
			Household with children	.049	.131	.710	208	.305
			Doesn't want to say	b				
		Household with children	One-person household	.162 [*]	.080	.044	.005	.319
			Married/cohabiti ng couple with no children	037	.101	.715	234	.161

			(Othorn) all a dult	0.40	101	740	205	000
			(Other) all-adult household (all aged over 18)	049	.131	.710	305	.208
			Doesn't want to say	, b				
		Doesn't want to say	One-person household	. c				
			Married/cohabiti ng couple with no children	·c			-	
			(Other) all-adult household (all aged over 18)	C			-	
			Household with children	.c				
Ī	Male	One-person household	Married/cohabiti ng couple with no children	133	.089	.132	307	.040
			(Other) all-adult household (all aged over 18)	.036	.126	.776	211	.282
			Household with children	256 [*]	.081	.002	416	096
			Doesn't want to say	.b				
		Married/cohabiti ng couple with	One-person household	.133	.089	.132	040	.307
	no children	(Other) all-adult household (all aged over 18)	.169	.139	.225	104	.443	
			Household with children	122	.101	.227	321	.076
			Doesn't want to say	b				

	(Other) all-adult household (all	One-person household	036	.126	.776	282	.211
	aged over 18)	Married/cohabiti ng couple with no children	169	.139	.225	443	.104
		Household with children	292 [*]	.135	.031	556	027
		Doesn't want to say	b				
	Household with children	One-person household	.256 [*]	.081	.002	.096	.416
		Married/cohabiti ng couple with no children	.122	.101	.227	076	.321
		(Other) all-adult household (all aged over 18)	.292*	.135	.031	.027	.556
		Doesn't want to say	, b				
	Doesn't want to say	One-person household	, c				
		Married/cohabiti ng couple with no children	.c				-
		(Other) all-adult household (all aged over 18)	C			-	
	Household with children	, c		-		•	

- b. The level combination of factors in (J) is not observed.
- c. The level combination of factors in (I) is not observed.

Based on estimated marginal means
*. The mean difference is significant at the .050 level.

d. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).

Univariate Tests

Dependent Variable: Expanded Empowerment Index

[tyyppi] To which group (test o control group) does the	r				
respondent belong:	[t1] The resp	ondent's gender	Sum of Squares	df	Mean Square
Control group	Female	Contrast	4.552	3	1.517
		Error	493.613	1570	.314
	Male	Contrast	1.658	4	.415
		Error	493.613	1570	.314
Test group	Female	Contrast	1.842	3	.614
		Error	493.613	1570	.314
	Male	Contrast	3.564	3	1.188
		Error	493.613	1570	.314

Univariate Tests

[tyyppi]	10	wni	cn g	group	(test or
control	gro	nb)	doe	s the	

control group) does the				
respondent belong:	[t1] The respond	ent's gender	F	Sig.
Control group	Female	Contrast	4.826	.002
		Error		
	Male	Contrast	1.318	.261
		Error		
Test group	Female	Contrast	1.953	.119
		Error		
	Male	Contrast	3.779	.010

Error

Each F tests the simple effects of [t6] The respondent's household composition within each level combination of the other effects shown. These tests are based on the estimable linearly independent pairwise comparisons among the estimated marginal means.

2. [t1] The respondent's gender * [t6] The respondent's household composition

Estimates

	[t6] The respondent's			95% Confidence Interval
[t1] The respondent's gender	household composition	Mean	Std. Error	Lower Bound
Female	One-person household	3.481 ^a	.038	3.407
	Married/cohabiting couple with no children	3.564 ^a	.051	3.463
	(Other) all-adult household (all aged over 18)	3.570 ^a	.077	3.418
	Household with children	3.654 ^a	.033	3.590
	Doesn't want to say	a,b		
Male	One-person household	3.427 ^a	.028	3.372
	Married/cohabiting couple with no children	3.548 ^a	.048	3.455

(Other) all-adult household (a aged over 18)	3.363 ^a	.075	3.215
Household with children	3.590 ^a	.044	3.504
Doesn't want to say	3.125 ^{a,c}	.397	2.346

Estimates

Dependent variable. Expanded	i Empowerment index	
		95% Confidence Interval
	[t6] The respondent's	
[t1] The respondent's gender	household composition	Upper Bound
Female	One-person household	3.556
	Married/cohabiting couple with no children	3.665
	(Other) all-adult household (all aged over 18)	3.721
	Household with children	3.719
	Doesn't want to say	
Male	One-person household	3.483
	Married/cohabiting couple with no children	3.641
	(Other) all-adult household (all aged over 18)	3.511
	Household with children	3.677
	Doesn't want to say	3.903

- a. Covariates appearing in the model are evaluated at the following values: [t2] The respondent's age group (categorised by researcher) = 3.39, q16_5pt = 3.9465.
- b. This level combination of factors is not observed, thus the corresponding population marginal mean is not estimable.
- c. Based on modified population marginal mean.

Pairwise Comparisons

	(I) [t6] The	(J) [t6] The				95% Con Interval for I	
[t1] The respondent's gender	respondent's household composition	respondent's household composition	Mean Difference (I-J)	Std. Error	Sig. ^f	Lower Bound	Upper Bound
Female	One-person household	Married/cohabiting couple with no children	083	.064	.194	208	.042
		(Other) all-adult household (all aged over 18)	089	.086	.302	257	.080
		Household with children	173 [*]	.051	<.001	272	074
		Doesn't want to say	,b		•	-	
	Married/cohabiting couple with no	One-person household	.083	.064	.194	042	.208
	children	(Other) all-adult household (all aged over 18)	006	.092	.950	187	.176
		Household with children	090	.061	.142	210	.030
		Doesn't want to say	, b				

	(Other) all-adult household (all aged	One-person household	.089	.086	.302	080	.257
	over 18)	Married/cohabiting couple with no children	.006	.092	.950	176	.187
		Household with children	084	.084	.318	250	.081
		Doesn't want to say	,b				
	Household with children	One-person household	.173*	.051	<.001	.074	.272
		Married/cohabiting couple with no children	.090	.061	.142	030	.210
		(Other) all-adult household (all aged over 18)	.084	.084	.318	081	.250
		Doesn't want to say	b				
	Doesn't want to say	One-person household	.c				
		Married/cohabiting couple with no children	.c				-
		(Other) all-adult household (all aged over 18)	.c		-		-
		Household with children	.c				
Male	One-person household	Married/cohabiting couple with no children	121 [*]	.055	.029	229	012
		(Other) all-adult household (all aged over 18)	.064	.080.	.424	093	.222

		Household with children	163 [*]	.052	.002	266	060
		Doesn't want to say	.302 ^d	.398	.447	478	1.083
С	Married/cohabiting couple with no	One-person household	.121*	.055	.029	.012	.229
С	children	(Other) all-adult household (all aged over 18)	.185*	.089	.038	.010	.360
		Household with children	042	.065	.514	169	.085
		Doesn't want to say	.423 ^d	.400	.290	361	1.207
h	Other) all-adult nousehold (all aged	One-person household	064	.080	.424	222	.093
over 18)	Married/cohabiting couple with no children	185 [*]	.089	.038	360	010	
		Household with children	227*	.087	.009	398	056
		Doesn't want to say	.238 ^d	.404	.555	554	1.031
	Household with children	One-person household	.163*	.052	.002	.060	.266
		Married/cohabiting couple with no children	.042	.065	.514	085	.169
		(Other) all-adult household (all aged over 18)	.227*	.087	.009	.056	.398
		Doesn't want to say	.465 ^d	.399	.244	318	1.249
	Doesn't want to say	One-person household	302 ^e	.398	.447	-1.083	.478
		Married/cohabiting couple with no children	423 ^e	.400	.290	-1.207	.361

(Other) all-adult household (all aged over 18)	238 ^e	.404	.555	-1.031	.554
Household with children	465 ^e	.399	.244	-1.249	.318

Based on estimated marginal means

- *. The mean difference is significant at the .050 level.
- b. The level combination of factors in (J) is not observed.
- c. The level combination of factors in (I) is not observed.
- d. An estimate of the modified population marginal mean (J).
- e. An estimate of the modified population marginal mean (I).
- f. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).

Univariate Tests

Dependent Variable: Expanded Empowerment Index

[t1] The respon	dent's gender	Sum of Squares	df	Mean Square	F	Sig.
Female	Contrast	3.694	3	1.231	3.916	.008
	Error	493.613	1570	.314		
Male	Contrast	4.721	4	1.180	3.754	.005
	Error	493.613	1570	.314		

Each F tests the simple effects of [t6] The respondent's household composition within each level combination of the other effects shown. These tests are based on the estimable linearly independent pairwise comparisons among the estimated marginal means.

```
GLM ExpandedEmpowermentIndex BY tyyppi t1 t10 WITH t2 q16_5pt

/DESIGN = tyyppi t1 t10 tyyppi*t1 tyyppi*t10 t1*t10 tyyppi*t1*t10 t2 q16_5pt

/PRINT = PARAMETER
```

/EMMEANS = TABLES(tyyppi*t1*t10) COMPARE(tyyppi) COMPARE(t1) COMPARE(t10) /EMMEANS = TABLES(t1*t10) COMPARE(t1) COMPARE(t10).

General Linear Model

Notes

Output Created		07-SEP-2024 12:14:14
Comments		
Input	Active Dataset	DataSet1
	Filter	<none></none>
	Weight	<none></none>
	Split File	<none></none>
	N of Rows in Working Data File	1597
Missing Value Handling	Definition of Missing	User-defined missing values are treated as missing.
	Cases Used	Statistics are based on all cases with valid data for all variables in the model.
Syntax		GLM ExpandedEmpowermentIndex BY tyyppi t1 t10 WITH t2 q16_5pt /DESIGN = tyyppi t1 t10 tyyppi*t1 tyyppi*t10 t1*t10 tyyppi*t1*t10 t2 q16_5pt /PRINT = PARAMETER

		/EMMEANS = TABLES(tyyppi*t1*t10) COMPARE(tyyppi) COMPARE(t1) COMPARE(t10) /EMMEANS = TABLES(t1*t10) COMPARE(t1) COMPARE(t10).
Resources	Processor Time	00:00:00.11
	Elapsed Time	00:00:00.18

Between-Subjects Factors

		Value Label	N
[tyyppi] To which group (test or	0	Control group	1023
control group) does the respondent belong:	1	Test group	566
[t1] The respondent's gender	1	Female	761
	2	Male	828
[t10] What is your personal average total annual income before tax (= gross income)? (euros/year) (categorised by researcher)	1	Under 10,001 euros/year	618
	2	10,001 - 15,000 euros/year	377
	3	15,001 - 30,000 euros/year	362
	4	30,001 - 50,000 euros/year	86
	5	50,001 euros/year or more	10
	9	Can't say/Does not want to answer	136

Tests of Between-Subjects Effects

Dependent Variable: Expanded Empowerment Index

•					
Course	Type III Sum of	df	Moon Square	F	Sig
Source	Squares	aı	Mean Square	Г	Sig.
Corrected Model	546.099 ^a	24	22.754	76.045	<.001
Intercept	287.567	1	287.567	961.056	<.001
tyyppi	2.362	1	2.362	7.892	.005
t1	1.131	1	1.131	3.781	.052
t10	30.253	5	6.051	20.221	<.001
tyyppi * t1	.011	1	.011	.036	.850
tyyppi * t10	1.128	5	.226	.754	.583
t1 * t10	1.101	5	.220	.736	.597
tyyppi * t1 * t10	.368	4	.092	.307	.873
t2	.547	1	.547	1.827	.177
q16_5pt	326.733	1	326.733	1091.948	<.001
Error	467.980	1564	.299		
Total	20489.863	1589			
Corrected Total	1014.079	1588			
D.O. 500	/A !! 1 LD 0	E04\			

a. R Squared = .539 (Adjusted R Squared = .531)

Parameter Estimates

					95% Confidence Interval		
Parameter	В	Std. Error	t	Sig.	Lower Bound	Upper Bound	
Intercept	2.278	.127	17.976	<.001	2.030	2.527	
[tyyppi=0]	230	.145	-1.589	.112	515	.054	
[tyyppi=1]	0 ^a						
[t1=1]	.230	.147	1.567	.117	058	.518	

[t1=2]	0 ^a					
[t10=1]	175	.123	-1.426	.154	416	.066
[t10=2]	059	.130	450	.653	314	.197
[t10=3]	.166	.131	1.274	.203	090	.423
[t10=4]	.347	.156	2.216	.027	.040	.654
[t10=5]	.551	.403	1.367	.172	239	1.341
[t10=9]	O ^a					
[tyyppi=0] * [t1=1]	082	.192	428	.668	460	.295
[tyyppi=0] * [t1=2]	0 ^a					
[tyyppi=1] * [t1=1]	0 ^a			-		
[tyyppi=1] * [t1=2]	0 ^a					
[tyyppi=0] * [t10=1]	.057	.158	.359	.719	253	.367
[tyyppi=0] * [t10=2]	.143	.167	.856	.392	185	.471
[tyyppi=0] * [t10=3]	.066	.168	.390	.696	264	.395
[tyyppi=0] * [t10=4]	.108	.217	.494	.621	319	.534
[tyyppi=0] * [t10=5]	059	.462	129	.898	966	.847
[tyyppi=0] * [t10=9]	O ^a					
[tyyppi=1] * [t10=1]	0 ^a					
[tyyppi=1] * [t10=2]	0 ^a			-		
[tyyppi=1] * [t10=3]	0 ^a					
[tyyppi=1] * [t10=4]	0 ^a					
[tyyppi=1] * [t10=5]	0 ^a					
[tyyppi=1] * [t10=9]	0 ^a					
[t1=1] * [t10=1]	114	.167	682	.495	441	.213
[t1=1] * [t10=2]	125	.176	713	.476	471	.220
[t1=1] * [t10=3]	273	.173	-1.573	.116	612	.067
[t1=1] * [t10=4]	145	.229	637	.524	594	.303
[t1=1] * [t10=5]	.453	.598	.758	.449	720	1.627

[t1=1] * [t10=9]	0 ^a					
[t1=2] * [t10=1]	0ª					
[t1=2] * [t10=2]	0ª					
[t1=2] * [t10=3]	O ^a					
[t1=2] * [t10=4]	O ^a					
[t1=2] * [t10=5]	O ^a					
[t1=2] * [t10=9]	O ^a					
[tyyppi=0] * [t1=1] * [t10=1]	.053	.215	.245	.806	369	.474
[tyyppi=0] * [t1=1] * [t10=2]	.072	.226	.318	.750	372	.516
[tyyppi=0] * [t1=1] * [t10=3]	.194	.226	.857	.391	249	.636
[tyyppi=0] * [t1=1] * [t10=4]	.025	.307	.082	.935	578	.628
[tyyppi=0] * [t1=1] * [t10=5]	O ^a					
[tyyppi=0] * [t1=1] * [t10=9]	0 ^a					
[tyyppi=0] * [t1=2] * [t10=1]	O ^a					
[tyyppi=0] * [t1=2] * [t10=2]	0 ^a					
[tyyppi=0] * [t1=2] * [t10=3]	O ^a					
[tyyppi=0] * [t1=2] * [t10=4]	O ^a					
[tyyppi=0] * [t1=2] * [t10=5]	0 ^a					
[tyyppi=0] * [t1=2] * [t10=9]	0 ^a					
[tyyppi=1] * [t1=1] * [t10=1]	0 ^a					
[tyyppi=1] * [t1=1] * [t10=2]	O ^a					
[tyyppi=1] * [t1=1] * [t10=3]	O ^a					
[tyyppi=1] * [t1=1] * [t10=4]	O ^a					
[tyyppi=1] * [t1=1] * [t10=9]	O ^a					
[tyyppi=1] * [t1=2] * [t10=1]	0ª					

[tyyppi=1] * [t1=2] * [t10=2]	0 ^a					
[tyyppi=1] * [t1=2] * [t10=3]	0 ^a					
[tyyppi=1] * [t1=2] * [t10=4]	0 ^a					
[tyyppi=1] * [t1=2] * [t10=5]	0 ^a					
[tyyppi=1] * [t1=2] * [t10=9]	0 ^a					
t2	015	.011	-1.352	.177	038	.007
q16_5pt	.343	.010	33.045	<.001	.323	.364

a. This parameter is set to zero because it is redundant.

Estimated Marginal Means

1. [tyyppi] To which group (test or control group) does the respondent belong: * [t1] The respondent's gender * [t10] What is your personal average total annual income before tax (= gross income)? (euros/year) (categorised by researcher)

Estimates

		[t10] What is your			95% Confide	nce Interval
[tyyppi] To which		personal average total				
group (test or control		annual income before				
group) does the	[t1] The respondent's	tax (= gross income)?		Std.	Lower	Upper
respondent belong:	gender	(euros/year)	Mean	Error	Bound	Bound

		(categorised by researcher)				
Control group	Female	Under 10,001 euros/year	3.319 ^a	.040	3.241	3.397
		10,001 - 15,000 euros/year	3.529 ^a	.050	3.432	3.627
		15,001 - 30,000 euros/year	3.651 ^a	.053	3.547	3.755
		30,001 - 50,000 euros/year	3.832 ^a	.112	3.612	4.052
		50,001 euros/year or more	4.443 ^a	.547	3.370	5.516
		Can't say/Does not want to answer	3.498 ^a	.083	3.336	3.660
Male	Male	Under 10,001 euros/year	3.232 ^a	.037	3.160	3.304
		10,001 - 15,000 euros/year	3.435 ^a	.048	3.340	3.530
		15,001 - 30,000 euros/year	3.582 ^a	.052	3.481	3.684
		30,001 - 50,000 euros/year	3.805 ^a	.120	3.570	4.040
		50,001 euros/year or more	3.842 ^a	.207	3.435	4.248
		Can't say/Does not want to answer	3.350 ^a	.093	3.169	3.532
Test group	Female	Under 10,001 euros/year	3.522 ^a	.061	3.403	3.641
		10,001 - 15,000 euros/year	3.627 ^a	.070	3.491	3.763
		15,001 - 30,000 euros/year	3.705 ^a	.063	3.581	3.829
		30,001 - 50,000 euros/year	4.012 ^a	.137	3.743	4.281

	50,001 euros/year or more	a,b	•		
	Can't say/Does not want to answer	3.811 ^a	.095	3.624	3.998
Male	Under 10,001 euros/year	3.406 ^a	.051	3.305	3.506
	10,001 - 15,000 euros/year	3.522 ^a	.067	3.390	3.654
	15,001 - 30,000 euros/year	3.747 ^a	.068	3.614	3.880
	30,001 - 50,000 euros/year	3.928 ^a	.110	3.713	4.143
	50,001 euros/year or more	4.132ª	.387	3.372	4.891
	Can't say/Does not want to answer	3.581 ^a	.112	3.362	3.800

a. Covariates appearing in the model are evaluated at the following values: [t2] The respondent's age group (categorised by researcher) = 3.39, q16_5pt = 3.9465.

Pairwise Comparisons

		(I) [t10] What is your personal average total	(J) [t10] What is your personal average total				95% Cor Interv	al for
respondent	[t1] The respondent's gender	annual income before tax (= gross income)? (euros/year) (categorised by researcher)	annual income before tax (= gross income)? (euros/year) (categorised by researcher)	Mean Differenc e (I-J)	Std. Error	Sig. ^d	Lower Bound	Upper Bound

b. This level combination of factors is not observed, thus the corresponding population marginal mean is not estimable.

Control group	Female	Under 10,001 euros/year	10,001 - 15,000 euros/year	211*	.064	<.001	335	086
			15,001 - 30,000 euros/year	333 [*]	.067	<.001	464	201
			30,001 - 50,000 euros/year	514 [*]	.119	<.001	748	279
			50,001 euros/year or more	-1.124*	.548	.041	-2.200	048
		Can't say/Does not want to answer	180 [*]	.091	.049	359	001	
	10,001 - 15,000 euros/year	Under 10,001 euros/year	.211*	.064	<.001	.086	.335	
		15,001 - 30,000 euros/year	122	.073	.095	265	.021	
			30,001 - 50,000 euros/year	303 [*]	.123	.014	544	062
			50,001 euros/year or more	913	.549	.097	-1.991	.164
			Can't say/Does not want to answer	.031	.096	.747	158	.220
		15,001 - 30,000 euros/year	Under 10,001 euros/year	.333*	.067	<.001	.201	.464
			10,001 - 15,000 euros/year	.122	.073	.095	021	.265
		30,001 - 50,000 euros/year	181	.124	.143	423	.061	
			50,001 euros/year or more	792	.550	.150	-1.870	.287

	Can't say/Does not want to answer	.153	.099	.121	040	.346
30,001 - 50,000 euros/year	Under 10,001 euros/year	.514 [*]	.119	<.001	.279	.748
	10,001 - 15,000 euros/year	.303 [*]	.123	.014	.062	.544
	15,001 - 30,000 euros/year	.181	.124	.143	061	.423
	50,001 euros/year or more	611	.559	.275	-1.706	.485
	Can't say/Does not want to answer	.334*	.140	.017	.060	.608
50,001 euros/year or	Under 10,001 euros/year	1.124*	.548	.041	.048	2.200
more	10,001 - 15,000 euros/year	.913	.549	.097	164	1.991
	15,001 - 30,000 euros/year	.792	.550	.150	287	1.870
	30,001 - 50,000 euros/year	.611	.559	.275	485	1.706
	Can't say/Does not want to answer	.945	.553	.088	141	2.030
Can't say/Does not want to	Under 10,001 euros/year	.180 [*]	.091	.049	.001	.359
answer	10,001 - 15,000 euros/year	031	.096	.747	220	.158
	15,001 - 30,000 euros/year	153	.099	.121	346	.040
3	30,001 - 50,000 euros/year	334 [*]	.140	.017	608	060

			50,001 euros/year or more	945	.553	.088	-2.030	.141
	Male	Under 10,001 euros/year	10,001 - 15,000 euros/year	203 [*]	.061	<.001	322	084
			15,001 - 30,000 euros/year	351 [*]	.064	<.001	476	225
			30,001 - 50,000 euros/year	573 [*]	.126	<.001	820	326
			50,001 euros/year or more	610 [*]	.211	.004	-1.023	196
		Can't say/Does not want to answer	119	.100	.234	314	.077	
	10,001 - 15,000 euros/year	Under 10,001 euros/year	.203 [*]	.061	<.001	.084	.322	
			15,001 - 30,000 euros/year	147 [*]	.071	.038	287	008
			30,001 - 50,000 euros/year	370 [*]	.129	.004	624	116
			50,001 euros/year or more	407	.213	.056	825	.011
		Can't say/Does not want to answer	.085	.104	.418	120	.289	
		15,001 - 30,000 euros/year	Under 10,001 euros/year	.351*	.064	<.001	.225	.476
			10,001 - 15,000 euros/year	.147*	.071	.038	.008	.287
		30,001 - 50,000 euros/year	222	.130	.088	477	.033	

	50,001 euros/year or more	259	.214	.225	678	.160
	Can't say/Does not want to answer	.232*	.106	.029	.024	.440
30,001 - 50,000 euros/year	Under 10,001 euros/year	.573 [*]	.126	<.001	.326	.820
	10,001 - 15,000 euros/year	.370 [*]	.129	.004	.116	.624
	15,001 - 30,000 euros/year	.222	.130	.088	033	.477
	50,001 euros/year or more	037	.239	.878	506	.432
	Can't say/Does not want to answer	.454*	.151	.003	.158	.751
50,001 euros/year or	Under 10,001 euros/year	.610 [*]	.211	.004	.196	1.023
more	10,001 - 15,000 euros/year	.407	.213	.056	011	.825
	15,001 - 30,000 euros/year	.259	.214	.225	160	.678
	30,001 - 50,000 euros/year	.037	.239	.878	432	.506
	Can't say/Does not want to answer	.491*	.227	.030	.046	.936
Can't say/Does not want to	Under 10,001 euros/year	.119	.100	.234	077	.314
answer	10,001 - 15,000 euros/year	085	.104	.418	289	.120
	15,001 - 30,000 euros/year	232 [*]	.106	.029	440	024

			30,001 - 50,000 euros/year	454 [*]	.151	.003	751	158
			50,001 euros/year or more	491*	.227	.030	936	046
Test group	Female	Under 10,001 euros/year	10,001 - 15,000 euros/year	105	.092	.255	286	.076
			15,001 - 30,000 euros/year	183 [*]	.088	.038	355	010
			30,001 - 50,000 euros/year	490 [*]	.150	.001	785	196
			50,001 euros/year or more	. b		•		
			Can't say/Does not want to answer	289*	.113	.011	511	067
		10,001 - 15,000 euros/year	Under 10,001 euros/year	.105	.092	.255	076	.286
			15,001 - 30,000 euros/year	078	.094	.407	262	.106
			30,001 - 50,000 euros/year	385 [*]	.154	.012	687	084
			50,001 euros/year or more	b				
			Can't say/Does not want to answer	184	.118	.119	415	.047
		15,001 - 30,000 euros/year	Under 10,001 euros/year	.183*	.088	.038	.010	.355
			10,001 - 15,000 euros/year	.078	.094	.407	106	.262
			30,001 - 50,000 euros/year	308 [*]	.150	.041	603	012

50,001 b
Can't say/Does not want to answer 30,001 - 50,000 Under 10,001 .490* .150 .001 .196 .785 euros/year 10,001 - 15,000 .385* .154 .012 .084 .687 euros/year 15,001 - 30,000 .308* .150 .041 .012 .603 euros/year 50,001 b
not want to answer 30,001 - 50,000
Second
30,001 - 50,000 Under 10,001
euros/year 10,001 - 15,000
euros/year 15,001 - 30,000
15,001 - 30,000
euros/year 50,001
50,001 b
euros/year or more Can't say/Does .201 .167 .228126 .528
more Can't say/Does .201 .167 .228 126 .528
·
not want to
answer
50,001 Under 10,001 c
euros/year or euros/year more 10,001 - 15,000 c
more 10,001 - 15,000 c
15,001 - 30,000 c euros/year
30,001 - 50,000 c
euros/year
Can't say/Does c
not want to
answer Can't say/Does Under 10,001 289* .113 .011 .067 .511
Can't say/Does Under 10,001 .289* .113 .011 .067 .511 not want to euros/year
answer 10,001 - 15,000 .184 .118 .119047 .415
euros/year
15,001 - 30,000 .106 .114 .352 118 .330
euros/year euros/year

		30,001 - 50,000 euros/year	201	.167	.228	528	.126
		50,001 euros/year or more	b .	-			
Male	Under 10,001 euros/year	10,001 - 15,000 euros/year	117	.085	.169	283	.050
		15,001 - 30,000 euros/year	342 [*]	.085	<.001	509	174
		30,001 - 50,000 euros/year	522 [*]	.121	<.001	760	284
		50,001 euros/year or more	726	.391	.063	-1.492	.040
		Can't say/Does not want to answer	175	.123	.154	416	.066
	10,001 - 15,000 euros/year	Under 10,001 euros/year	.117	.085	.169	050	.283
		15,001 - 30,000 euros/year	225 [*]	.095	.018	412	038
		30,001 - 50,000 euros/year	405 [*]	.129	.002	658	153
		50,001 euros/year or more	609	.393	.121	-1.380	.161
		Can't say/Does not want to answer	059	.130	.653	314	.197
	15,001 - 30,000 euros/year	Under 10,001 euros/year	.342 [*]	.085	<.001	.174	.509
		10,001 - 15,000 euros/year	.225*	.095	.018	.038	.412
		30,001 - 50,000 euros/year	180	.128	.160	432	.072

-1.155	200
	.386
090	.423
.284	.760
.153	.658
072	.432
992	.585
.040	.654
040	1.492
161	1.380
386	1.155
585	.992
239	1.341
066	.416
197	.314
423	.090
	.284 .153072992 .040040161386585239066197

30,001 - 50,000 euros/year	347 [*]	.156	.027	654	040
50,001	551	.403	.172	-1.341	.239
euros/year or					
more					

Based on estimated marginal means

- *. The mean difference is significant at the .050 level.
- b. The level combination of factors in (J) is not observed.
- c. The level combination of factors in (I) is not observed.
- d. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).

Univariate Tests

Dependent Variable: Expanded Empowerment Index

[tyyppi] To which group (test of control group) does the					
respondent belong:	[t1] The resp	ondent's gender	Sum of Squares	df	Mean Square
Control group	Female	Contrast	11.928	5	2.386
		Error	467.980	1564	.299
	Male	Contrast	14.595	5	2.919
		Error	467.980	1564	.299
Test group	Female	Contrast	4.453	4	1.113
		Error	467.980	1564	.299
	Male	Contrast	8.973	5	1.795
		Error	467.980	1564	.299

Univariate Tests

[tyyppi] To which group (test or control group) does the				
respondent belong:	[t1] The respon	dent's gender	F	Sig.
Control group	Female	Contrast	7.973	<.001
		Error		
	Male	Contrast	9.756	<.001
		Error		
Test group	Female	Contrast	3.721	.005
		Error		
	Male	Contrast	5.998	<.001
		Error		

Each F tests the simple effects of [t10] What is your personal average total annual income before tax (= gross income)? (euros/year) (categorised by researcher) within each level combination of the other effects shown. These tests are based on the estimable linearly independent pairwise comparisons among the estimated marginal means.

2. [t1] The respondent's gender * [t10] What is your personal average total annual income before tax (= gross income)? (euros/year) (categorised by researcher)

Estimates

	[t10] What is your personal average total annual income before tax (= gross income)? (euros/year) (categorised by			95% Confidence Interval
[t1] The respondent's gender	researcher)	Mean	Std. Error	Lower Bound
Female	Under 10,001 euros/year	3.420 ^a	.036	3.349
	10,001 - 15,000 euros/year	3.578 ^a	.043	3.494
	15,001 - 30,000 euros/year	3.678 ^a	.042	3.596
	30,001 - 50,000 euros/year	3.922 ^a	.089	3.748
	50,001 euros/year or more	4.443 ^{a,b}	.547	3.370
	Can't say/Does not want to answer	3.655 ^a	.063	3.531
Male	Under 10,001 euros/year	3.319 ^a	.032	3.257
	10,001 - 15,000 euros/year	3.479 ^a	.041	3.397
	15,001 - 30,000 euros/year	3.665 ^a	.043	3.581
	30,001 - 50,000 euros/year	3.866 ^a	.081	3.706
	50,001 euros/year or more	3.987 ^a	.220	3.556
	Can't say/Does not want to answer	3.466ª	.073	3.323

Estimates

Dependent Variable: Expanded	Empowerment Index	
	[t10] What is your personal average total annual income before tax (= gross income)? (euros/year) (categorised by	95% Confidence Interval
[t1] The respondent's gender	researcher)	Upper Bound
Female	Under 10,001 euros/year	3.492
	10,001 - 15,000 euros/year	3.662

	15,001 - 30,000 euros/year	3.760
	30,001 - 50,000 euros/year	4.096
	50,001 euros/year or more	5.516
	Can't say/Does not want to	3.778
	answer	
Male	Under 10,001 euros/year	3.381
	10,001 - 15,000 euros/year	3.560
	15,001 - 30,000 euros/year	3.749
	30,001 - 50,000 euros/year	4.026
	50,001 euros/year or more	4.417
	Can't say/Does not want to	3.608
	answer	

- a. Covariates appearing in the model are evaluated at the following values: [t2] The respondent's age group (categorised by researcher) = 3.39, q16_5pt = 3.9465.
- b. Based on modified population marginal mean.

Pairwise Comparisons

Dependent Variable	e: Expanded Empower	rment Index					
	(I) [t10] What is	(J) [t10] What is				95% Cor	nfidence
	your personal	your personal				Interval for I	Difference ^d
	average total	average total					
	annual income	annual income					
[t1] The	before tax (= gross	before tax (= gross	Mean				
respondent's	income)?	income)?	Difference	Std.		Lower	Upper
gender	(euros/year)	(euros/year)	(I-J)	Error	Sig. ^d	Bound	Bound

	(categorised by researcher)	(categorised by researcher)					
Female	Under 10,001 euros/year	10,001 - 15,000 euros/year	158 [*]	.056	.005	268	048
		15,001 - 30,000 euros/year	258 [*]	.056	<.001	367	148
		30,001 - 50,000 euros/year	502 [*]	.097	<.001	691	313
		50,001 euros/year or more	-1.022 ^b	.548	.062	-2.098	.053
		Can't say/Does not want to answer	234 [*]	.073	.001	377	092
	10,001 - 15,000 euros/year	Under 10,001 euros/year	.158 [*]	.056	.005	.048	.268
		15,001 - 30,000 euros/year	100	.060	.094	217	.017
		30,001 - 50,000 euros/year	344 [*]	.099	<.001	538	151
		50,001 euros/year or more	865 ^b	.549	.115	-1.941	.212
		Can't say/Does not want to answer	077	.076	.315	226	.073
	15,001 - 30,000 euros/year	Under 10,001 euros/year	.258*	.056	<.001	.148	.367
		10,001 - 15,000 euros/year	.100	.060	.094	017	.217
		30,001 - 50,000 euros/year	244 [*]	.097	.012	435	053
		50,001 euros/year or more	765 ^b	.549	.164	-1.841	.312
		Can't say/Does not want to answer	.023	.076	.757	125	.172
	30,001 - 50,000 euros/year	Under 10,001 euros/year	.502*	.097	<.001	.313	.691

		10,001 - 15,000 euros/year	.344*	.099	<.001	.151	.538
		15,001 - 30,000 euros/year	.244*	.097	.012	.053	.435
		50,001 euros/year or more	521 ^b	.554	.348	-1.608	.567
		Can't say/Does not want to answer	.268*	.109	.014	.054	.481
	50,001 euros/year or more	Under 10,001 euros/year	1.022 ^c	.548	.062	053	2.098
		10,001 - 15,000 euros/year	.865 ^c	.549	.115	212	1.941
		15,001 - 30,000 euros/year	.765 ^c	.549	.164	312	1.841
		30,001 - 50,000 euros/year	.521 ^c	.554	.348	567	1.608
		Can't say/Does not want to answer	.788 ^c	.551	.153	292	1.868
	Can't say/Does not want to answer	Under 10,001 euros/year	.234*	.073	.001	.092	.377
		10,001 - 15,000 euros/year	.077	.076	.315	073	.226
		15,001 - 30,000 euros/year	023	.076	.757	172	.125
		30,001 - 50,000 euros/year	268 [*]	.109	.014	481	054
		50,001 euros/year or more	788 ^b	.551	.153	-1.868	.292
Male	Under 10,001 euros/year	10,001 - 15,000 euros/year	160 [*]	.052	.002	262	057
		15,001 - 30,000 euros/year	346 [*]	.054	<.001	452	240
		30,001 - 50,000 euros/year	548 [*]	.088	<.001	720	375

	50,001 euros/year or more	668 [*]	.222	.003	-1.103	232
	Can't say/Does not want to answer	147	.079	.064	302	.008
10,001 - 15,000 euros/year	Under 10,001 euros/year	.160*	.052	.002	.057	.262
	15,001 - 30,000 euros/year	186 [*]	.060	.002	303	069
	30,001 - 50,000 euros/year	388*	.091	<.001	567	208
	50,001 euros/year or more	508 [*]	.223	.023	946	070
	Can't say/Does not want to answer	.013	.084	.877	151	.177
15,001 - 30,000 euros/year	Under 10,001 euros/year	.346*	.054	<.001	.240	.452
	10,001 - 15,000 euros/year	.186*	.060	.002	.069	.303
	30,001 - 50,000 euros/year	201*	.091	.028	381	022
	50,001 euros/year or more	322	.223	.150	760	.116
	Can't say/Does not want to answer	.199*	.084	.018	.034	.364
30,001 - 50,000 euros/year	Under 10,001 euros/year	.548*	.088	<.001	.375	.720
	10,001 - 15,000 euros/year	.388*	.091	<.001	.208	.567
	15,001 - 30,000 euros/year	.201*	.091	.028	.022	.381
	50,001 euros/year or more	120	.234	.607	579	.338
	Can't say/Does not want to answer	.401*	.109	<.001	.187	.614

50,001 euros/year or more	Under 10,001 euros/year	.668*	.222	.003	.232	1.103
	10,001 - 15,000 euros/year	.508 [*]	.223	.023	.070	.946
	15,001 - 30,000 euros/year	.322	.223	.150	116	.760
	30,001 - 50,000 euros/year	.120	.234	.607	338	.579
	Can't say/Does not want to answer	.521*	.231	.024	.067	.974
Can't say/Does not want to answer	Under 10,001 euros/year	.147	.079	.064	008	.302
	10,001 - 15,000 euros/year	013	.084	.877	177	.151
	15,001 - 30,000 euros/year	199 [*]	.084	.018	364	034
	30,001 - 50,000 euros/year	401*	.109	<.001	614	187
	50,001 euros/year or more	521 [*]	.231	.024	974	067

Based on estimated marginal means

- b. An estimate of the modified population marginal mean (J).
- c. An estimate of the modified population marginal mean (I).
- d. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).

Univariate Tests

[t1] The respond	ent's gender	Sum of Squares	df	Mean Square	F	Sig.
Female	Contrast	12.658	5	2.532	8.461	<.001

^{*.} The mean difference is significant at the .050 level.

	Error	467.980	1564	.299		
Male	Contrast	20.796	5	4.159	13.900	<.001
	Error	467.980	1564	.299		

Each F tests the simple effects of [t10] What is your personal average total annual income before tax (= gross income)? (euros/year) (categorised by researcher) within each level combination of the other effects shown. These tests are based on the linearly independent pairwise comparisons among the estimated marginal means.

```
GLM ExpandedEmpowermentIndex BY tyyppi t1 kuntar WITH t2 q16_5pt

/DESIGN = tyyppi t1 kuntar tyyppi*t1 tyyppi*kuntar t1*kuntar tyyppi*t1*kuntar t2 q16_5pt

/PRINT = PARAMETER

/EMMEANS = TABLES(tyyppi*t1*kuntar) COMPARE(tyyppi) COMPARE(t1) COMPARE(kuntar)

/EMMEANS = TABLES(t1*kuntar) COMPARE(t1) COMPARE(kuntar).
```

General Linear Model

Notes

Output Created		07-SEP-2024 12:14:14
Comments		
Input	Active Dataset	DataSet1
	Filter	<none></none>
	Weight	<none></none>
	Split File	<none></none>
	N of Rows in Working Data File	1597

Missing Value Handling	Definition of Missing	User-defined missing values are treated as missing.
	Cases Used	Statistics are based on all cases with valid data for all variables in the model.
Syntax		GLM ExpandedEmpowermentIndex BY tyyppi t1 kuntar WITH t2 q16_5pt /DESIGN = tyyppi t1 kuntar tyyppi*t1 tyyppi*kuntar t1*kuntar tyyppi*t1*kuntar t2 q16_5pt /PRINT = PARAMETER /EMMEANS = TABLES(tyyppi*t1*kuntar) COMPARE(tyyppi) COMPARE(t1) COMPARE(kuntar) /EMMEANS = TABLES(t1*kuntar) /EMMEANS = TABLES(t1*kuntar) COMPARE(t1) COMPARE(t1) COMPARE(t1)
Resources	Processor Time	00:00:00.05
	Elapsed Time	00:00:00.07

Between-Subjects Factors

		Value Label	N
[tyyppi] To which group (test or	0	Control group	1006
control group) does the respondent belong:	1	Test group	559
[t1] The respondent's gender	1	Female	756

	2	Male	809
[kuntar] Degree of urbanisation of respondent's municipality of	1	Urban municipality	1166
residence, statistical grouping of municipalities (from register)	2	Semi-urban municipality	227
	3	Rural municipality	172

Tests of Between-Subjects Effects

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	501.922ª	13	38.609	121.246	<.001
Intercept	307.921	1	307.921	966.969	<.001
tyyppi	4.419	1	4.419	13.876	<.001
t1	.343	1	.343	1.078	.299
kuntar	.606	2	.303	.952	.386
tyyppi * t1	.070	1	.070	.221	.639
tyyppi * kuntar	.056	2	.028	.088	.916
t1 * kuntar	.937	2	.469	1.472	.230
tyyppi * t1 * kuntar	.312	2	.156	.490	.613
t2	.811	1	.811	2.546	.111
q16_5pt	436.241	1	436.241	1369.935	<.001
Error	493.899	1551	.318		
Total	20222.510	1565			
Corrected Total	995.821	1564			

a. R Squared = .504 (Adjusted R Squared = .500)

Parameter Estimates

, '	·				95% Confidence Interval	
Parameter	В	Std. Error	t	Sig.	Lower Bound	Upper Bound
Intercept	2.114	.127	16.644	<.001	1.865	2.363
[tyyppi=0]	049	.128	379	.704	300	.203
[tyyppi=1]	0 ^a					
[t1=1]	.035	.151	.234	.815	261	.332
[t1=2]	0 ^a					
[kuntar=1]	.023	.112	.206	.837	197	.243
[kuntar=2]	.094	.135	.699	.485	170	.358
[kuntar=3]	O ^a					
[tyyppi=0] * [t1=1]	165	.184	895	.371	525	.196
[tyyppi=0] * [t1=2]	O ^a					
[tyyppi=1] * [t1=1]	0 ^a					
[tyyppi=1] * [t1=2]	0 ^a					
[tyyppi=0] * [kuntar=1]	137	.137	-1.005	.315	406	.131
[tyyppi=0] * [kuntar=2]	132	.168	789	.431	461	.197
[tyyppi=0] * [kuntar=3]	0 ^a					
[tyyppi=1] * [kuntar=1]	O ^a					
[tyyppi=1] * [kuntar=2]	0 ^a					
[tyyppi=1] * [kuntar=3]	0 ^a					
[t1=1] * [kuntar=1]	.067	.161	.416	.677	248	.382
[t1=1] * [kuntar=2]	.019	.202	.093	.926	377	.414
[t1=1] * [kuntar=3]	0 ^a					
[t1=2] * [kuntar=1]	0 ^a					
[t1=2] * [kuntar=2]	O ^a					

[t1=2] * [kuntar=3]	0 ^a					
[tyyppi=0] * [t1=1] * [kuntar=1]	.194	.196	.988	.323	191	.579
[tyyppi=0] * [t1=1] * [kuntar=2]	.181	.245	.737	.461	300	.661
[tyyppi=0] * [t1=1] * [kuntar=3]	0 ^a			-		
[tyyppi=0] * [t1=2] * [kuntar=1]	0ª	-	-			
[tyyppi=0] * [t1=2] * [kuntar=2]	0ª	-	-			
[tyyppi=0] * [t1=2] * [kuntar=3]	0 ^a	-	-			
[tyyppi=1] * [t1=1] * [kuntar=1]	0 ^a	-				
[tyyppi=1] * [t1=1] * [kuntar=2]	0 ^a	-				
[tyyppi=1] * [t1=1] * [kuntar=3]	0 ^a	-				
[tyyppi=1] * [t1=2] * [kuntar=1]	0 ^a					
[tyyppi=1] * [t1=2] * [kuntar=2]	0 ^a					
[tyyppi=1] * [t1=2] * [kuntar=3]	0 ^a					
t2	019	.012	-1.596	.111	043	.004
q16_5pt	.377	.010	37.013	<.001	.357	.397

a. This parameter is set to zero because it is redundant.

Estimated Marginal Means

^{1. [}tyyppi] To which group (test or control group) does the respondent belong: * [t1] The respondent's gender * [kuntar] Degree of urbanisation of respondent's municipality of residence, statistical grouping of municipalities (from register)

Estimates

Dependent Variable: Expanded Empowerment Index

		[kuntar] Degree of urbanisation	
[tyyppi] To which group (test or		of respondent's municipality of	
control group) does the		residence, statistical grouping	
respondent belong:	[t1] The respondent's gender	of municipalities (from register)	Mean
Control group	Female	Urban municipality	3.508 ^a
		Semi-urban municipality	3.523 ^a
		Rural municipality	3.362 ^a
	Male	Urban municipality	3.376 ^a
		Semi-urban municipality	3.453 ^a
		Rural municipality	3.491 ^a
Test group	Female	Urban municipality	3.665 ^a
		Semi-urban municipality	3.688ª
		Rural municipality	3.575 ^a
	Male	Urban municipality	3.563 ^a
		Semi-urban municipality	3.634 ^a
		Rural municipality	3.539 ^a

Estimates

		[kuntar] Degree of urbanisation	
[tyyppi] To which group (test or		of respondent's municipality of	
control group) does the		residence, statistical grouping	
respondent belong:	[t1] The respondent's gender	of municipalities (from register)	Std. Error
Control group	Female	Urban municipality	.030

		Semi-urban municipality	.062
		Rural municipality	.075
	Male	Urban municipality	.029
		Semi-urban municipality	.068
		Rural municipality	.074
Test group	Female	Urban municipality	.039
		Semi-urban municipality	.103
		Rural municipality	.109
	Male	Urban municipality	.038
		Semi-urban municipality	.084
		Rural municipality	.105

Estimates

[tyyppi] To which group (test or control group) does the		[kuntar] Degree of urbanisation of respondent's municipality of residence, statistical grouping	95% Confidence Interval
respondent belong:	[t1] The respondent's gender	of municipalities (from register)	Lower Bound
Control group	Female	Urban municipality	3.449
		Semi-urban municipality	3.401
		Rural municipality	3.214
	Male	Urban municipality	3.320
		Semi-urban municipality	3.319
		Rural municipality	3.347
Test group	Female	Urban municipality	3.588
		Semi-urban municipality	3.485
		Rural municipality	3.362
	Male	Urban municipality	3.487
		Semi-urban municipality	3.468
		Rural municipality	3.333

Estimates

[tyyppi] To which group (test or control group) does the		[kuntar] Degree of urbanisation of respondent's municipality of residence, statistical grouping	95% Confidence Interval
respondent belong:	[t1] The respondent's gender	of municipalities (from register)	Upper Bound
Control group	Female	Urban municipality	3.567
		Semi-urban municipality	3.645
		Rural municipality	3.509
	Male	Urban municipality	3.433
		Semi-urban municipality	3.586
		Rural municipality	3.635
Test group	Female	Urban municipality	3.741
		Semi-urban municipality	3.890
		Rural municipality	3.788
	Male	Urban municipality	3.638
		Semi-urban municipality	3.799
		Rural municipality	3.746

a. Covariates appearing in the model are evaluated at the following values: [t2] The respondent's age group (categorised by researcher) = 3.40, q16_5pt = 3.9489.

[tyyppi] To which group (test or control group) does the respondent belong:	[t1] The respondent's gender	(I) [kuntar] Degree of urbanisation of respondent's municipality of residence, statistical grouping of municipalities (from register)	(J) [kuntar] Degree of urbanisation of respondent's municipality of residence, statistical grouping of municipalities (from register)
Control group	Female	Urban municipality	Semi-urban municipality
			Rural municipality
		Semi-urban municipality	Urban municipality
			Rural municipality
		Rural municipality	Urban municipality
			Semi-urban municipality
	Male	Urban municipality	Semi-urban municipality
			Rural municipality
		Semi-urban municipality	Urban municipality
			Rural municipality
		Rural municipality	Urban municipality
			Semi-urban municipality
Test group	Female	Urban municipality	Semi-urban municipality
			Rural municipality
		Semi-urban municipality	Urban municipality
			Rural municipality
		Rural municipality	Urban municipality
			Semi-urban municipality
	Male	Urban municipality	Semi-urban municipality
			Rural municipality
		Semi-urban municipality	Urban municipality
			Rural municipality
		Rural municipality	Urban municipality
			Semi-urban municipality

[tyyppi] To which group (test or control group) does the respondent belong:	[t1] The respondent's gender	(I) [kuntar] Degree of urbanisation of respondent's municipality of residence, statistical grouping of municipalities (from register)	(J) [kuntar] Degree of urbanisation of respondent's municipality of residence, statistical grouping of municipalities (from register)	Mean Difference (I-J)
Control group	Female	Urban municipality	Semi-urban municipality	015
			Rural municipality	.146
		Semi-urban municipality	Urban municipality	.015
			Rural municipality	.161
		Rural municipality	Urban municipality	146
			Semi-urban municipality	161
	Male	Urban municipality	Semi-urban municipality	076
			Rural municipality	114
		Semi-urban municipality	Urban municipality	.076
			Rural municipality	038
		Rural municipality	Urban municipality	.114
			Semi-urban municipality	.038
Test group	Female	Urban municipality	Semi-urban municipality	023
			Rural municipality	.090
		Semi-urban municipality	Urban municipality	.023
			Rural municipality	.113
		Rural municipality	Urban municipality	090
			Semi-urban municipality	113
	Male	Urban municipality	Semi-urban municipality	071
			Rural municipality	.023
		Semi-urban municipality	Urban municipality	.071
			Rural municipality	.094
		Rural municipality	Urban municipality	023
			Semi-urban municipality	094

[tyyppi] To which group (test or control group) does the respondent belong:	[t1] The respondent's gender	(I) [kuntar] Degree of urbanisation of respondent's municipality of residence, statistical grouping of municipalities (from register)	(J) [kuntar] Degree of urbanisation of respondent's municipality of residence, statistical grouping of municipalities (from register)	Std. Error
Control group	Female	Urban municipality	Semi-urban municipality	.069
			Rural municipality	.081
		Semi-urban municipality	Urban municipality	.069
			Rural municipality	.097
		Rural municipality	Urban municipality	.081
			Semi-urban municipality	.097
	Male	Urban municipality	Semi-urban municipality	.074
			Rural municipality	.079
		Semi-urban municipality	Urban municipality	.074
			Rural municipality	.100
		Rural municipality	Urban municipality	.079
			Semi-urban municipality	.100
Test group	Female	Urban municipality	Semi-urban municipality	.110
			Rural municipality	.115
		Semi-urban municipality	Urban municipality	.110
			Rural municipality	.150
		Rural municipality	Urban municipality	.115
			Semi-urban municipality	.150
	Male	Urban municipality	Semi-urban municipality	.092
			Rural municipality	.112
		Semi-urban municipality	Urban municipality	.092
			Rural municipality	.135
		Rural municipality	Urban municipality	.112
			Semi-urban municipality	.135

[tyyppi] To which group (test or control group) does the respondent belong:	[t1] The respondent's gender	(I) [kuntar] Degree of urbanisation of respondent's municipality of residence, statistical grouping of municipalities (from register)	(J) [kuntar] Degree of urbanisation of respondent's municipality of residence, statistical grouping of municipalities (from register)	Sig. ^a
Control group	Female	Urban municipality	Semi-urban municipality	.829
			Rural municipality	.070
		Semi-urban municipality	Urban municipality	.829
			Rural municipality	.097
		Rural municipality	Urban municipality	.070
			Semi-urban municipality	.097
	Male	Urban municipality	Semi-urban municipality	.301
			Rural municipality	.148
		Semi-urban municipality	Urban municipality	.301
			Rural municipality	.703
		Rural municipality	Urban municipality	.148
			Semi-urban municipality	.703
Test group	Female	Urban municipality	Semi-urban municipality	.835
			Rural municipality	.436
		Semi-urban municipality	Urban municipality	.835
			Rural municipality	.451
		Rural municipality	Urban municipality	.436
			Semi-urban municipality	.451
	Male	Urban municipality	Semi-urban municipality	.443
			Rural municipality	.837
		Semi-urban municipality	Urban municipality	.443
			Rural municipality	.485
		Rural municipality	Urban municipality	.837
			Semi-urban municipality	.485

[tyyppi] To which group (test or control group) does the respondent belong:	[t1] The respondent's gender	(I) [kuntar] Degree of urbanisation of respondent's municipality of residence, statistical grouping of municipalities (from register)	(J) [kuntar] Degree of urbanisation of respondent's municipality of residence, statistical grouping of municipalities (from register)	95% Confidence Interval for Difference ^a Lower Bound
Control group	Female	Urban municipality	Semi-urban municipality	150
			Rural municipality	012
		Semi-urban municipality	Urban municipality	120
			Rural municipality	029
		Rural municipality	Urban municipality	305
			Semi-urban municipality	352
	Male	Urban municipality	Semi-urban municipality	221
			Rural municipality	269
		Semi-urban municipality	Urban municipality	068
			Rural municipality	234
		Rural municipality	Urban municipality	040
			Semi-urban municipality	158
Test group	Female	Urban municipality	Semi-urban municipality	239
			Rural municipality	137
		Semi-urban municipality	Urban municipality	193
			Rural municipality	181
		Rural municipality	Urban municipality	316
			Semi-urban municipality	407
	Male	Urban municipality	Semi-urban municipality	252
			Rural municipality	197
		Semi-urban municipality	Urban municipality	110
			Rural municipality	170
		Rural municipality	Urban municipality	243
			Semi-urban municipality	358

[tyyppi] To which group (test or control group) does the respondent belong:	[t1] The respondent's gender	(I) [kuntar] Degree of urbanisation of respondent's municipality of residence, statistical grouping of municipalities (from register)	(J) [kuntar] Degree of urbanisation of respondent's municipality of residence, statistical grouping of municipalities (from register)	95% Confidence Interval for Difference Upper Bound
Control group	Female	Urban municipality	Semi-urban municipality	.120
			Rural municipality	.305
		Semi-urban municipality	Urban municipality	.150
			Rural municipality	.352
		Rural municipality	Urban municipality	.012
			Semi-urban municipality	.029
	Male	Urban municipality	Semi-urban municipality	.068
			Rural municipality	.040
		Semi-urban municipality	Urban municipality	.221
			Rural municipality	.158
		Rural municipality	Urban municipality	.269
			Semi-urban municipality	.234
Test group	Female	Urban municipality	Semi-urban municipality	.193
			Rural municipality	.316
		Semi-urban municipality	Urban municipality	.239
			Rural municipality	.407
		Rural municipality	Urban municipality	.137
			Semi-urban municipality	.181
	Male	Urban municipality	Semi-urban municipality	.110
			Rural municipality	.243
		Semi-urban municipality	Urban municipality	.252
			Rural municipality	.358
		Rural municipality	Urban municipality	.197
			Semi-urban municipality	.170

Based on estimated marginal means a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).
Univariate Tests

[tyyppi] To which group (test of control group) does the	-				
respondent belong:	[t1] The response	ondent's gender	Sum of Squares	df	Mean Square
Control group	Female	Contrast	1.134	2	.567
		Error	493.899	1551	.318
	Male	Contrast	.891	2	.446
		Error	493.899	1551	.318
Test group	Female	Contrast	.222	2	.111
		Error	493.899	1551	.318
	Male	Contrast	.220	2	.110
		Error	493.899	1551	.318

Univariate Tests

Dependent Variable: Expanded Empowerme	ent Index
[tyyppi] To which group (test or	

control group) does the				
respondent belong:	[t1] The resp	ondent's gender	F	Sig.
Control group	Female	Contrast	1.781	.169
		Error		
	Male	Contrast	1.400	.247
		Error		
Test group	Female	Contrast	.349	.705
		Error		
	Male	Contrast	.346	.708
		Error		

Each F tests the simple effects of [kuntar] Degree of urbanisation of respondent's municipality of residence, statistical grouping of municipalities (from register) within each level combination of the other effects shown. These tests are based on the linearly independent pairwise comparisons among the estimated marginal means.

2. [t1] The respondent's gender * [kuntar] Degree of urbanisation of respondent's municipality of residence, statistical grouping of municipalities (from register)

Estimates

Dependent Variable: Expanded Empowerment Index

	[kuntar] Degree of urbanisation of respondent's municipality of residence, statistical grouping			95% Confidence Interval
[t1] The respondent's gender	of municipalities (from register)	Mean	Std. Error	Lower Bound
Female	Urban municipality	3.586 ^a	.025	3.538
	Semi-urban municipality	3.605 ^a	.060	3.487
	Rural municipality	3.468 ^a	.066	3.339
Male	Urban municipality	3.469 ^a	.024	3.423
	Semi-urban municipality	3.543 ^a	.054	3.437
	Rural municipality	3.515 ^a	.064	3.389

Estimates

Dependent Variable: Expanded Empowerment Index

[kuntar] Degree of urbanisation

95% Confidence Interval

[t1] The respondent's gender

of respondent's municipality of

	residence, statistical grouping	
	of municipalities (from register)	Upper Bound
Female	Urban municipality	3.635
	Semi-urban municipality	3.723
	Rural municipality	3.598
Male	Urban municipality	3.516
	Semi-urban municipality	3.649
	Rural municipality	3.641

Dependent Variable: Expanded Empowerment Index					
[t1] The respondent's gender	(I) [kuntar] Degree of urbanisation of respondent's municipality of residence, statistical grouping of municipalities (from register)	(J) [kuntar] Degree of urbanisation of respondent's municipality of residence, statistical grouping of municipalities (from register)	Mean Difference (I-J)		
Female	Urban municipality	Semi-urban municipality	019		
		Rural municipality	.118		
	Semi-urban municipality	Urban municipality	.019		
		Rural municipality	.137		
	Rural municipality	Urban municipality	118		
		Semi-urban municipality	137		
Male	Urban municipality	Semi-urban municipality	074		
		Rural municipality	046		
	Semi-urban municipality	Urban municipality	.074		

a. Covariates appearing in the model are evaluated at the following values: [t2] The respondent's age group (categorised by researcher) = 3.40, q16_5pt = 3.9489.

	Rural municipality	.028
Rural municipality	Urban municipality	.046
	Semi-urban municipality	028

	i ali wice compai	100110	
Dependent Variable: Expande	d Empowerment Index		
[t1] The respondent's gender	(I) [kuntar] Degree of urbanisation of respondent's municipality of residence, statistical grouping of municipalities (from register)	(J) [kuntar] Degree of urbanisation of respondent's municipality of residence, statistical grouping of municipalities (from register)	Std. Error
Female	Urban municipality	Semi-urban municipality	.065
		Rural municipality	.071
	Semi-urban municipality	Urban municipality	.065
		Rural municipality	.089
	Rural municipality	Urban municipality	.071
		Semi-urban municipality	.089
Male	Urban municipality	Semi-urban municipality	.059
		Rural municipality	.069
	Semi-urban municipality	Urban municipality	.059
		Rural municipality	.084
	Rural municipality	Urban municipality	.069
		Semi-urban municipality	.084

Pairwise Comparisons

[t1] The respondent's gender municipalities (from register) municipalities (from register) Sig.^a

Female	Urban municipality	Semi-urban municipality	.771
		Rural municipality	.094
	Semi-urban municipality	Urban municipality	.771
		Rural municipality	.125
	Rural municipality	Urban municipality	.094
		Semi-urban municipality	.125
Male	Urban municipality	Semi-urban municipality	.213
		Rural municipality	.506
	Semi-urban municipality	Urban municipality	.213
		Rural municipality	.739
	Rural municipality	Urban municipality	.506
		Semi-urban municipality	.739

Dependent	Variable:	Expanded	Empowerment	Index
Dependent	valiable.		FILIDOMETHICH	IIIUEX

	(I) [kuntar] Degree of urbanisation of respondent's municipality of residence, statistical grouping of	(J) [kuntar] Degree of urbanisation of respondent's municipality of residence, statistical grouping of	95% Confidence Interval for Difference ^a
[t1] The respondent's gender	municipalities (from register)	municipalities (from register)	Lower Bound
Female	Urban municipality	Semi-urban municipality	147
		Rural municipality	020
	Semi-urban municipality	Urban municipality	109
		Rural municipality	038
	Rural municipality	Urban municipality	257
		Semi-urban municipality	312
Male	Urban municipality	Semi-urban municipality	190
		Rural municipality	180
	Semi-urban municipality	Urban municipality	042
		Rural municipality	137
	Rural municipality	Urban municipality	089
		Semi-urban municipality	193

Dependent variable: Expanded	a Empowerment index		
	(I) [kuntar] Degree of urbanisation of respondent's municipality of residence, statistical grouping of	(J) [kuntar] Degree of urbanisation of respondent's municipality of residence, statistical grouping of	95% Confidence Interval for Difference
[t1] The respondent's gender	municipalities (from register)	municipalities (from register)	Upper Bound
Female	Urban municipality	Semi-urban municipality	.109
		Rural municipality	.257
	Semi-urban municipality	Urban municipality	.147
		Rural municipality	.312
	Rural municipality	Urban municipality	.020
		Semi-urban municipality	.038
Male	Urban municipality	Semi-urban municipality	.042
		Rural municipality	.089
	Semi-urban municipality	Urban municipality	.190
		Rural municipality	.193
	Rural municipality	Urban municipality	.180
		Semi-urban municipality	.137

Based on estimated marginal means

a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).

Univariate Tests

Dependent Variable: Expanded Empowerment Index

[t1] The respondent's gender		Sum of Squares	df	Mean Square	F	Sig.
Female	Contrast	.980	2	.490	1.539	.215
	Error	493.899	1551	.318		
Male	Contrast	.571	2	.285	.896	.408
	Error	493.899	1551	.318		

Each F tests the simple effects of [kuntar] Degree of urbanisation of respondent's municipality of residence, statistical grouping of municipalities (from register) within each level combination of the other effects shown. These tests are based on the linearly independent pairwise comparisons among the estimated marginal means.