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Abstract

The research presents a spatial model based on space syntax for simulating the
transmission of COVID-19 as an implementation of SIER model and quantified the
impact of several non-pharmaceutical interventions. The aim of the research is to
provide a spatial perspective in modelling the pandemic, so that the effect of spatially
specified interventions can be clearly simulated and measured. Taking Inner London
and Metropolitan Area of Beijing as case areas, daily movements and contacts of the
whole population were simulated on the street segment maps. The effects of public
policies were quantified on their performances, namely the speed of transmission, and
costs, namely the proportion of people affected by the policies. Based on this model,
two policy sets abstracted from policies in the UK and China were tested with several
sets of time lags of execution. The research found that the policy set based on Chinese
policies performs better in controlling the transmission under the condition of short
responding time towards the pandemic. When responding time rises beyond a threshold
specific to each city, the speed of transmission rapidly increases along with the side
effects of interventions. Through the modelling of spatial usage and movements, the
perspective of space is recalled in epidemiological analyses. With more detailed
modelling of human behaviours in the future, this model will be more helpful for

providing reference for public medical emergencies.
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1 Introduction

1.1 Relevance Statement

The pandemic of COVID-19 has caused immense damage to the wellbeing of people
worldwide. Although the hardest time has passed, we need to learn from this disaster.
Looking back on public policies against the pandemic worldwide, various approaches
have been used according to the changing perspectives towards the pandemic. For
example, China is known for exerting collective power of the whole nation and
executing rather strict spatial intervention to prevent COVID-19 from spreading. The
UK, on the other hand, prefers gentler ways of regulation. So, it is natural to question
whether there exists an optimal solution against the pandemic, which both has a

controlling effect over the pandemic and leaves little negative impact on daily lives.

With this background, this paper focuses on the impact of various policies. In this paper,
the word policy specifically refers to non-pharmaceutical interventions (NPIs) aiming
at reducing the transmission of the virus. It seems obvious that space plays an important
role in the transmission of a pandemic. However, the relationship between the spatial
configuration and the transmission has not been clarified. Therefore, this study is trying
to build a simulation model and quantify the impact of different policies based on spatial
interventions. Based on this, a comparative analysis is carried out to check the effect if
the policy of one nation was applied to another. In short, this study is trying to present
a new way of checking the effect of policies on the perspective of space and deepen the

understanding towards the pandemic.
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1.2 Research question

(a) How to quantify the performance of a non-pharmaceutical intervention against
COVID-19?

(b) How do different factors such as the combination of policies, time lag of execution
and the spatial configuration of cities affect the performance of interventions in

controlling the spread of COVID-19?

1.3 Structure of the study

Firstly, the analysis is based on a model to simulate the spread and transmission of
Coronavirus. The aim of the model is to introduce the element of the space into the
modelling, where the space is often ignored or simplified into abstract containers of
people rather than a real stage of movement and encounter. Therefore, the simulation
model will be introduced after the literature review, as the fundamental method of

analysis.

Secondly, the main policies applied in study areas against the pandemic will be
quantified and introduced into the model. By affecting the movement patterns of
individuals, or changing certain key factor, the speed and range of pandemic
transmission may vary among policies. In this paper, different combinations of policies
will be analysed in both study areas to check to what extent the policies could control
the spread of pandemic, and whether the policies are suitable for the area in the
perspective of space. Since there are two study areas in this analysis, this paper will try
exchanging the policies between these two areas and check the results. Besides, time
also matters in policy application, so the time to trigger policies and the duration of

policies will also be considered in the model.
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2 Literature Review

2.1 Development of policies in the UK

Since the outbreak of pandemic, the understanding of UK government towards the
pandemic has been gradually changing and deepening. The House of Commons
published a report named Coronavirus. lessons learned to date on October 12th, 2021
(Hunt et al., 2021). This report is to review the governments’ response to the pandemic

and to reflect on the lessons learned from the disaster.

In the early period of the pandemic, the attitude of the government tended to be gentler.
Although the government did not support the prevalent idea of herd-immunity openly,
which indicates the state that a large proportion of the population has been infected and
immune to a certain disease, they did not take immediate action to prevent the pandemic
from spreading. The initial aim of the policy was flattening the peak of infection rather
than stop the transmission. The earliest compulsory policy against the pandemic was
announced on 12 March 2020. This is about a seven days’ self-isolation for anyone with

a new continuous cough or a fever (Hunt et al., 2021).

Afterwards, there were in total three national lockdowns during the pandemic (Table 1).
During the lockdown, several laws were published to guarantee the restriction. There
were three types of restrictions, namely gathering, movement and business restrictions.
Gathering restrictions means that most of the social gatherings were banned during
national lockdowns. Specific rules include restricting the number of people gathering,
and other rules ranging from household mixing to certain events. Movement restrictions
means that leaving home without a ‘reasonable excuse’ was prohibited during the

national lockdowns. Travelling was also prohibited. Business restrictions means that
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certain businesses were required to close during the national lockdowns (Barber et al.,

2022).

Besides, between the first two lockdowns, a three-tier system of local restrictions were
announced on 12 October 2020 to manage the varying restrictions according to local
states. Each area was categorised into one of three tiers including ‘medium’, ‘high’ and

‘very high’. Different levels of restrictions were applied in areas of different tiers

(Brown and Kirk-Wade, 2-21).

According to the Hose of Commons, the pandemic could have been controlled better if
the restrictions were applied earlier. They also concluded several lessons. Firstly,
although the Scientific Advisory Group for Emergencies (SAGE) has done well in
providing scientific advice in public policies, especially non-pharmaceutical
interventions, the House of Commons thinks that the government have taken too long
waiting for the scientific evidence and missed the chance to call an immediate lockdown
to stop the virus from spreading. There is also concern about lack of data to support
simulation models, and whether the scientific advice has learned from international
experiences. As for the localised policies, the House of Commons thinks that the three-
tier system was short of clear and unified standard for categorisation, and the diverse

local policies lack of scientific support.

Table 1 Duration of National Lockdowns in UK

(Source: House of Commons, United Kingdom)

Start End Number of weeks
Lockdown one 27 Mar 2020 1 Jun 2020 10
Lockdown two 5 Nov 2020 2 Dec 2020 4
Lockdown three 6 Jan 2021 17 Mar 2021 13
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2.2 Development of policies in China

After the first case of COVID-19 was discovered in Wuhan on Dec 27th, 2019, local
and national authorities made a quick response. On Dec 31st, which was four days later,
the National Health Commission of China sent experts to Wuhan for guidance and
investigation. People in Wuhan was noticed to wear face masks and avoid gathering on
the same day. Afterwards, National Health Commission initially determined the
pathogen as a new kind of coronavirus and reported to World Health Organisation on
Jan 9th, 2023. On Jan 19th, National Health Commission confirmed that the
coronavirus could be transmitted among humans, and Wuhan was locked down
immediately on Jan 20th (China, 2020). After months of fight against the virus, the
transmission was primarily controlled, and the work of controlling the pandemic
becomes normalised since May 2023. Then, a series of policies were published and will

be briefly introduced below.

Since the outbreak of COVID-19 in Dec 2019, medical support and segregation have
been executed on various scales to prevent the pandemic from spreading. This work is
guided by the national government through a set of policy documents, the most
important of which is Covid-19 Prevention and Control Guideline. Policies have
covered many aspects, ranging from the ones specific to the infected individuals, as

well as broader ones toward the public (Graph 1).

Covid-19 controlling policies
l
| ,
|

The infected Close contact Building scale

Graph 1 Structure of COVID-19 Controlling Policies in China

Public

(Source: the author)
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The individual intervention differs between the infected cases and the close contact.

Firstly, newly infected cases would be reported and isolated at a certain site, where they
would receive medical treatment and daily life support (Graph 2). Mental health is also

considered important during such isolation. To deal with the rapidly increasing infected

cases, many temporary treatment sites have been built during the pandemic (Figure 1).

New infected case

v

Gathering and reporting information

in public medical institutes

Unified Isolation

Medical Daily life Mental
treatment support cure

Graph 2 Treatment on Infected Cases

(Source: the author)

Figure 1 Temporary Treatment Site in Wuhan Sports Centre

(Source: http://www.news.cn)
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Metadata plays an important role in the control of COVID-19. Based on the metadata
and epidemiological investigation, the range of movement of the infected case was
analysed, which includes but is not limited to household, transport and site visited.
Afterwards, people who might have contacted the infected will be defined as close
contact. They will be informed and required for self-isolation at home for a certain

period of time, where medical test is executed daily by staffs in the community (Graph

3).

Tracing movement People with Self isolation

towards the infected close contact at home

* Home * Daily medical test
* Public transport used * Life support
* Site visited

Graph 3 Treatment on Close Contacts

(Source: the author)

To confirm the transparency of the spread of COVID-19 and inform the public of the
potential threat, the tracing information is collected anonymously and reported
regularly by official health institutes in the official press conferences of COVID-19 in
Beijing, which has also been mentioned in Section 3.4. Below is one example of

reported infected cases in the 215th Official Press Conference of COVID-19 in Beijing.

“...Case No. 6, male, 9 years old, currently living in Ronghui Community,
Tiangongyuan Sub-District, Daxing District, is the grandson of Case 5. He has
visited the confirmed case reported on January 17 many times. On January 18, as
a close contact of the confirmed case, he underwent unified isolation for medical
observation and nucleic acid testing. On January 19, the testing report was
positive. On the same day, he was transferred to Ditan Hospital by ambulance.
Based on comprehensive epidemiological history, clinical manifestations,
laboratory testing and imaging examination results, he has been confirmed as an

infected case on the same day, and the clinical classification was mild...”
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There are also policies of entry permission towards the public. Any visitor to a
neighbourhood or indoor public space is required to scan the Health QR Code to make
registration at the entrance, and by this way the tracing information will be gathered
anonymously by a platform called National Metadata Pass (Figure 2). On checking the
National Metadata Pass of the visitor, the administrator can easily learn the current

Risky Status of the visitor and Risky Areas visited within 14 days.

BEABRBITER
BB, AWK

AETRAaTE+

Risky Status, which

RETE+E

is automatically
judged according
to the movement

traces.

/ ﬁ;' f— ‘ . .
ST - SR Risky Areas visited

within 14 days.

Figure 2 National Metadata Pass
(Source: WeChat)

Based on the individual trace, the Risky Status of the visitor is judged by National
Metadata Pass into four levels. According to the Risky Status of an individual, the
National Metadata Pass will be shown in green, yellow, orange, and red (Figure 3).
Green status means that the visitor is safe from the pandemic. Yellow status means that
the visitor is from risky countries, which are regularly updated by national government.
Orange status means that the visitor is close contact explained in Section 4.2. And red

status means that the visitor is a confirmed or suspected patients.
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Entering permission is dependent on the Risky Status of the visitor. Proof of health is
required for the visitor in yellow status, and visitors in orange or red status are not

allowed to enter public spaces.

Green I Red
Safe  From risky countries  Close contact Confirmed or
(regularly updated) suspected patients

Figure 3 Risky Status on National Metadata Pass
(Source: WeChat)

As has been explained, individual Risky Status is judged by whether one has visited
Risky Areas within 14 days. Therefore, to support this judgements, three levels of Risky
Areas are divided nationwide. The overall standard is dynamically updated by national
government through Covid-19 Prevention and Control Guideline, and the division and
publication are executed by local authorities. Correspondent to Section 3.4, the overall
data of Risky Areas published nationwide are collected regularly and announced on
multiple platforms. Therefore, it is easy for everyone to check the newly updated Risky

Areas throughout China.

Table 2 shows the regulation standard of Risky Areas in Beijing. To balance the need
of pandemic control and convenience of citizens, High and Medium Risky Areas are
often restricted in the range of neighbourhoods. People in High Risky Areas are
restricted at home, while those in Medium Risky Areas can only move within the area.
Regular medical test and basic living needs are supported by local authorities. Low
Risky Area is usually defined as the rest areas in the sub-district where High or Medium
Risky Areas are located. There is no compulsory restriction on the people in Low Risky

Areas, so this is just used as a reminder of the potential risk of infection.
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Table 2 Definition and Spatial Range of Risky Areas in Beijing

(Source: Beijing Government)

Risky Level  Standard Restriction  Spatial Range
High Within 14 days, there are Restricted at Community
- 5 new confirmed cases or home. (Neighbourhood)

- 2 new clustering infected
cases.
Medium Within 14 days, there are Restricted Community
- 2-5new confirmed cases or within the (Neighbourhood)
- 1 new clustering infected area.
cases.
Low Within 14 days, no new cases found. No Usually the sub-district
compulsory  where High/Medium

restriction.  Risky Areas are located

2.3 Research on the spatial effects of pandemic

There is lots of research on the spread and control of COVID-19 since the outbreak of
pandemic. In this topic, space syntax theories and methodologies (Hillier and Hanson,

1984) are widely used in spatial analyses, ranging from national scale to building scale.

Research on national and urban scale mostly focuses on finding and analysing various
factors affecting the space. For example, Lima et al. carried out a study on national
scale, aiming at testing the significance of certain factors to the spread of COVID-19 in
the US (Lima et al., 2021). Taking city as the basic unit of research, they found that
there is positive correlation between deaths caused by the pandemic and several factors,
such as walkability score, urban population size and density, etc. Similarly, there are
also studies on the urban scale. Legeby et al. analysed the impact of the pandemic on

the usage of urban green facilities in Stockholm and emphasized the importance of
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availability of urban green space (Legeby et al., 2022). Another research on Xi’an City
checked the change in the spatial configuration with space syntax methods and tested
several related factors (Yuan et al., 2022). These studies provided comparison on the
change of spatial usage before and after the outbreak of pandemic, and revealed the
spatial impact of pandemic from various perspectives. However, they are seldom
related to relevant policies, which should be an important factor in reshaping the space

in the pandemic era.

Research on the scale of buildings mostly aims at testing the change of spatial usage
caused by the pandemic. For example, Biiyiiksahin used Visibility Graph Analysis to
investigate the change in usage patterns of shopping malls during the pandemic
(Biiytiksahin, 2023). Askarizad et al. analysed the difference in the frequency of people
going to healthcare centres before and after the pandemic (Askarizad et al., 2022).
Wayfinding in the indoor space of hospitals was also analysed with the combination of
space syntax methods and mathematical models. In this topic, Mustafa and Ahmed also
did a more detailed analysis on the location of clinics part in hospitals (Mustafa and
Ahmed, 2022). They pointed out that although placing the clinic at the location of high
integration in a hospital is beneficial for wayfinding, it also increases the possibility of
clustering, which may lead to a higher rate of infection. Moreover, there is another
research on social distancing in clubhouses with graph analysis (Abdul Nasir et al.,
2021). Besides, Chen et al. did a sophisticated emulation towards the spread of COVID-
19 (Chen et al., 2022). The model is insightful for the design of indoor space. There are
also studies towards outdoor space, testing the availability of several public spaces
during the pandemic based on the spatial network (Istiani et al., 2023). In short, studies
on the building scale provide deep insight into spatial mechanism of the spread of

pandemic and are beneficial for the medical control.

Besides the research on physical space, there are also analyses in social or mental
aspects during the pandemic. For example, Park et al. collected data from social media

and analysed people’s perception towards some airports (Park et al., 2022). In another
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novel research, spatial network was analysed in combination with social network (Li et
al., 2022). It found that in the process of isolation, the infected were deprived of their
original roles in the social network, and a new social network was formed within the
isolation area based on the spatial proximity. These studies imply various factors which
might affect the management of space during the pandemic. The text mining techniques

used in the research also inspired this paper.

2.4 Research on pandemic transmission modelling

Since the outbreak of pandemic, various models have been used to predict the trend of
infection, medical needs, and effects of policies (Colbourn, 2020). One of the models
widely accepted in the UK is the CovidSim model derived from classic SE/IR model
(Schneider et al., 2020). In SIER model, the process of infection is divided into several
stages such as Susceptible, Exposed, Infected and Removed (Davies et al., 2020). Based
on this, CovidSim model develops a more precise method to simulate the process of
contact and infection. The model uses a stochastic way and treats each person
individually rather than treating every age group as a whole (Walker et al., 2020). To
simulate contact, the model set four scenarios including the household, school,
workplace and wider community, where different infectious rates upon contact are set
according to the age, place, etc (Ferguson et al., 2020). However, the model is not
spatial, since all the scenarios don’t have real locations. There are also critical thoughts
on the CovidSim model. For example, when the model is used for political consultancy,
the result of the model might affect the policy and the expectation towards the pandemic.

This may in turn affect the pandemic in reality (Van Basshuysen et al., 2021).
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3 Study Area, Data and Methodology

3.1 Study areas

The research areas selected in this paper are the central part of London and Beijing.
Compared to the outer regions, the selected areas have higher population density and
more social and economic activities, and so are more fragile towards the pandemic.

Therefore, study focusing on these areas should be more instructive.

Inner London was chosen as the first study case, denoted as Case London in later
sections. This area consists of the City of London and 12 London boroughs (Figure 4).

The area and population of each component of this area are listed in Table 3.

Camden Islington Hackney
City of Westminster Tower Hamlets
Kensington and Chelsea City of London
Hammersmith and Fulham Greenwich

Wandsworth Lambeth Southwark Lewisham

A

0 5 10 km
e e—

Figure 4 Case London: Inner London

(Source: the author)
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Figure 5 Case Beijing: Metropolitan Area of Beijing

(Source: the author)

The second study area is the Metropolitan Area of Beijing, denoted as Case Beijing in
later sections. This area consists of six districts, which are shown in Figure 5. District
is an administrative unit subject to cities. It should be noted that the area of Beijing
Capital International Airport is an enclave belonging to Chaoyang District but is not
included in the study area of Case Beijing. The area and population of each component

of this area are listed in Table 4.
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Table 3 Details of Case London

(Source: Office for National Statistics, United Kingdom)

Area (km?) Population in 2021 (thousands)
Camden 21.79 280
City of London 3.148 10.9
City of Westminster 22.05 270
Greenwich 50.46 289
Hackney 19.05 281
Hammersmith and Fulham 17.16 184
Islington 14.86 248
Kensington and Chelsea 12.39 157
Lambeth 27.25 321
Lewisham 35.33 305
Southwark 29.93 320
Tower Hamlets 21.58 332
Wandsworth 35.23 330
Total 310.2 3328

Table 4 Details of Case Beijing

(Source: Beijing Municipal Bureau of Statistics, China)

Area (km?) Population in 2021 (thousands)

Chaoyang* 455.5 3449

Dongcheng 41.93 708

Fengtai 306.0 2015

Haidian 428.9 3130

Shijingshan 84.35 566

Xicheng 50.35 1104

Total 1367 10972

* Beijing Capital International Airport is not included
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3.2 Data

Two types of data were used in this paper. Firstly, the spatial data constitute the base of
the simulation. The street segment map of London in 2018! and the street segment map
of Beijing in 20177 are used as the base maps for two cases. The author modified part
of the maps for the analyses. Based on the space syntax theory, streets are divided into
segments at intersections, and each segment acts as the basic spatial unit for containing
people and movements. The street segment map (segment map for short in texts below)
of both case areas are shown in Figures 6 and 7. Other spatial data, including the
locations of residential areas and stations for the public transport, are mostly from open
sources such as Open Street Map. They will be shown in the sections below. Then, some
statistical data are essential for some key parameters in the analysis, for example the
data of population among different age groups, household size or the proportion of
various means of transport. Similarly, their sources will be mentioned when used.

Besides, some parameters are based on certain assumption in the modelling.

Figure 6 Segment Map of Case London

(Source: Space Syntax Ltd., modified by the author)

1" Accessed from Space Syntax Limited.

2 Accessed from Dr Tao Yang, currently working in China Academy of Urban Planning and Design.
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5 10 km

Figure 7 Segment Map of Case Beijing

(Source: Tao Yang, modified by the author)

3.3 Methodology

This paper proposed a new spatial-based model to track and simulate the movements
happening in a city and track the transmission of the COVID-19. In this process, several
main policies used in the UK and China will be realised in the model, so that they could
be tested and quantified. Then, a comparative analysis will be carried out to examine
how the pandemic would be affected under different sets of policies. In this process, a
set of indices will be proposed to quantify the performance of policies in controlling

the pandemic and also the side effects on normal daily lives.

As the main part of the analysis, the simulation model is written in Python, and the
details will be introduced in Section 4. The full code will also be attached in the
appendix. DepthmapX and QGIS play an important role in processing spatial data and
making space syntax analyses. Besides, statistical analysis also goes along the data

processing and is realised through Excel and SPSS.
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4 Spatial modelling and measurement

To make quantitative measurement on the spatial impact of policies, a spatial model is
introduced to simulate the transmission of COVID-19 and test the effect of various

policies from a spatial perspective.

4.1 Spatial simulation model of the pandemic

4.1.1 Sample, time, and infectious stage

The model is built based on the segment map of London and Beijing separately. During
a certain time period, the movements of all the population are to be simulated on
temporal basis of At = 0.25 day. Initially, every individual is allocated with a home
in a segment according to the population data, and are randomly assigned with several
attributes, including age, preferred means of transport, location of school or workspace,
etc. To achieve these, all segments are categorised into Origin Segments within
residential areas or Destination Segments within non-residential areas according to the
land use data from Open Street Map. Then, the population of each London Borough or
District of Beijing is allocated to all Origin Segments within according to their length
(Figures 8 and 9), and the locations of workspace or schools are randomly chosen from
all Destination Segments. As for the age, people are categorised into three age groups,
namely children, adults, and elders. The proportions of each age group for both cases
are shown in Table 5. Besides, people are assigned into multiple households. The
proportions of household size are the same as official statistical data shown in Tables 6
and 7. Family members may have more chances of contact, which will be explained in

Section 4.1.2.
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Figure 8 Population of Segments in Case London

(Source: the author)
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Figure 9 Population of Segments in Case Beijing

(Source: the author)
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Table S Proportions of Population by Age Groups in 2021

(Source: Office for National Statistics, United Kingdom; Beijing Municipal Bureau of Statistics, China)

Category Age Case London Case Beijing
Children 0-15 16.1% 7.74%

Adult 16-64 74.59% 45.63%
Elders 65+ 9.31% 46.63%

Table 6 Household Size of London in 2021

(Source: Office for National Statistics, United Kingdom)

Household Size Number of Households Proportion Cumulative
(thousands) Proportion

1 920 25.8% 25.8%

2 1105 30.9% 56.7%

3 629 17.6% 74.3%

4 623 17.4% 91.8%

5 213 6.0% 97.7%

6+ 81 2.3% 100%

All 3571 100% 100%

Table 7 Household Size of Beijing in 2019

(Source: Beijing Municipal Bureau of Statistics, China)

Household Size Proportion Cumulative Proportion
1 23.6% 23.6%
2 31.6% 55.2%
3 25.1% 80.3%
4 10.5% 90.8%
5+ 9.2% 100%
All 100% 100%
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The process of infection for each individual is divided into several stages according to
SIER model (Davies et al., 2020), which is shown in Table 8. At first, everyone is
susceptible (S) for infection except for 2 infected individuals for seeding. Then an
individual enters Exposed state (E) for 4 days upon effective contact with infected
people. The individual is not infectious until the end of the stage. Afterwards, one either
enters the preclinical stage (Ip) for 1.5 days and clinical stage (Ic) for 3.5 days with the
probability of y;, where there are clinical symptoms, or enters subclinical stage (Ip)
with the probability of (1 — y;), where one is assumed to be only 50% infectious. Then,
the infected individual is removed (R) from the spatial transmission model out of either

recovery or isolation while waiting medical treatment.

Table 8 Process of Infection

(Source: the author)

Period (days)  Possible to be Infected Infectious

Susceptible (S) - Yes No
Exposed (E) 4 No No
Preclinical (Ip) 1.5 No Yes
Clinical (Ic) 3.5 No Yes
Subclinical (Is) 5 No Yes
Removed (R) - No No

4.1.2 Activities and contacts

In every At, every individual is to make movement following several patterns. There
are 3 ways of movement in the model. The first one is stay in the current location. The
second one is targeted movement, where one moves to a target (which might be very
far) corresponding to global movements. The third one is free movement, where one
moves around within street segments adjacent to the current location. The movement
choice differs according to time and age groups, which is shown in Table 9. To simulate

the process of household transmission, everyone is to stay at home in the first time
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period of every day and go back home when the day ends. As for the two time periods
in the middle of the day, every child or adult is to apply a targeted movement towards
school or workspace during the second time period during weekdays, and stay there in
the following period, while an elder will conduct free movement twice. During
weekend, everyone is to make independent random choices twice between free

movement near home and targeted movement towards a random non-residential

destination.
Table 9 Daily Activities in the Model
(Source: the author)
Children or Adults Elders Category of
Activities
Weekday Staying at home. Staying at home. Household
0:00-6:00
Weekday Targeted moving to Free moving near home. Outdoor
6:00-12:00  workspace or school.
(Fixed every weekday.)
Weekday Staying at work / school.  Staying at home. Indoor
12:00-18:00
Weekday Targeted moving home. Free moving near home. Outdoor
18:00-24:00
Weekend Staying at home. Staying at home. Household
0:00-6:00
Weekend 50% targeted moving to 50% targeted moving to Outdoor
6:00-18:00  random segment random segment
50% free moving 50% free moving
Weekend Targeted moving home. Targeted moving home. Outdoor
18:00-24:00

In each time period, the numbers of potential contacts for each individual in Susceptible
stage with infectious individuals including Preclinical, Clinical and Subclinical cases
are counted. For each contact, a Susceptible individual is possible to be infected and
enters Exposed stage. During the stay at home from 0:00-6:00, only contacts between
family members are counted. For all other activities, two individuals are regarded to
having contact once they pass by or stay in the same segment in each time period.
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However, this may overestimate the number of contacts. Therefore, an extra parameter
is introduced to proportionally scale down outdoor contacts, and the rate of infection
used in the model is a statistical parameter rather than the actual rate of infection for

each contact. These two parameters will be discussed in Section 4.1.3 below.

In targeted movement, the individual is often to travel a long distance. If such kind of
movement is treated the same as wandering around, then the individual is actually
walking through the whole city. This is not realistic, and such a long travel will affect
too many segments, causing bias in simulation. Therefore, various means of transport

are introduced into this model. According to Transport for London (TfL, 2020), the

4).

frequency of private transport is almost the same with that of public transport (Graph
30
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(Source: Transports for London, the United Kingdom)

So, in this model, everyone is randomly assigned into two groups of transport
preferences with equal probabilities. The first group of individuals always use private
transport for targeted movements, and the second group of individuals use public
transport. Since people in private cars do not have effective contact with other drivers

or pedestrians, they cannot infect others or be infected along the targeted movement.
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Therefore, targeted movements with private transport only make effective contact at
origins and destinations. The routes themselves are neglected. As for public transport,
movement traces from origins and destinations to their nearest public transport stations
are treated effective, while the routes taken by the public transport are not counted when
calculating contacts (Figure 10). This is because people taking public transport do not
infect or be infected by pedestrians during their travel by the public transport. However,
this does not underestimate the transmission within the public transport, because the
contacts among passengers have been counted twice when they gather near the stations

waiting for the public transport or get off.
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Figure 10 Means of Transport in the Model

(Source: the author)

4.1.3 Infection probability

After each period, the contacts between susceptible and infected individuals are
checked. The probability of one individual gets infected is
1— (1 —a)* for indoor contacts
Pr= {1 -(1- a)% for outdoor contacts
where a indicates the basic infectious rate upon each potential contact with an infected

person, and x indicates the number of infected person that one met in a certain At.
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The distinction between indoor and outdoor contacts has been shown in Section 4.1.2.
Since the model is built on the segment map of study areas, the precision of location is
limited to street level. However, that two individuals passed by the same street does not
mean that they are bound to meet or get close enough so that the virus is able to transmit.
Specifically, this would lead to overestimation of the probability of effective outdoor
contacts. Therefore, in this model, the number of outdoor encounters was scaled down
to a reasonable level and so the index b is introduced to the model. The parameter b

was adjusted to a certain level where the proportion of indoor infection is near 50%.

Since the value of these two factors, a and b, affects the probability of infection, they
have a direct effect on the speed of the transmission. Therefore, to determine the values,
the appropriate duration of pandemic should be figured out. R value means that each
infected person is expected to infect R individuals during the infectious period. If there
are infinite number of susceptible people, the number of the newly infected should be
an exponential function of time. Let T denotes the rounds of infectious period and
assume that there is one infected individual initially. Then the number of newly infected

people at time T is

I _{ 1forT=0
T RIT—l fOT‘T = 1,2,"'.

However, in actual cases, the proportion of the susceptible is declining as the virus

spreads. Let Ry be the initial R value, the formula above could be amended as
1forT=0

Iy = Sp_ ,
T {ROIT_1<1— 71"\11) forT=1,2,-

where S denote the number of the susceptibleat T and N denote the number of the

whole population. According to Davies et al., the mean value of R, is 2.68 (Davies et
al., 2020). Based on this, the ideal graph of infection could be drawn as follows (Graph
5).

In this graph, the curve of I indicates the number of the newly infected, and the curve

of I + R indicates the sum of the infected and recovered people, or the cumulative
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number of infections. It shows that given the total population of Case London and the
corresponding R, the infection lasts for approximately 85 days. This duration

constitutes the second criteria for choosing appropriate values of a and b.

With the proportion of indoor infection assumed as 50% and the duration of pandemic
set around 85 days, the appropriate values of a and b can be settled. Firstly, for any
value of a between 0 and 1, there exists a corresponding value of b, so that the
average duration of the pandemic is near 85 days. It is obvious that the values of a and
b are positively correlated. When the value of a rises, the value of b also increases,
leading to the rise of the proportion of indoor infection, because the indoor infection
rate is not affected by b. Then, there exists a couple of a and b, whose corresponding
proportion of indoor infection is the closest to 50%. The precision depends on the set
of values tested and are limited to random errors. Finally, the probability of one
individual gets infected is

{ 1—(1—0.02)* for indoor contacts
p = i )
! 1 — (1 —-0.02)22 for outdoor contacts

In the model above, every movement and contact within a city could be randomly

simulated. Compared to the statistical models, the advantage of this spatial model is
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that it is easier to check the transmission not only over time but space. More
relationships between the urban spatial configuration and pandemic could be revealed,

and the spatial effects of various policies could be tested.

4.1.4 Randomness

Full randomness is introduced into the process of simulation. For each simulation, all
individuals are randomly assigned with ages, home addresses, workspaces or schools,
households, and preferred means of transport. Their activities on weekends are also
random. For each scenario tested in Section 5, the simulation result is the average of
several independent random simulations. Besides, to ensure that the results of
simulation in multiple scenarios are comparable, a set of random seeds are controlled
in the initialisation process, so that the simulation of each scenario starts from a fixed

set of initial conditions.

4.2 Measurements of Simulation Results

In Section 5 below, multiple scenarios with one or more policies will be tested in the
simulation, and the impact of policies will be measured in multiple ways compared with
the basic model where no policy is applied.

Firstly, graphs will be used to show the trend of transmission over time. The impact of
policies can be directly shown through the changes in the shapes of curves. The data of
graphs come from two indices, namely the numbers of newly infected cases and current
clinical cases per day. The number of newly infected cases shows the speed of
transmission, while the number of clinical cases is linked to the burden of medical

system.

Secondly, some indices are used for further analyses on the performance of policies.

Each public policy has its own benefit and cost. While protecting public health and
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promoting social wellbeing in the long term, policies against the pandemic restricts
movements and activities, leaving negative impact on the economy and social welfare.
Therefore, policies cannot be evaluated only by its performance against the pandemic.
However, since this paper is not a comprehensive study, it cannot cover multiple
subjects such as economy or psychology but can only focus on the pandemic itself. For
the benefits of policies, the performance of each policy will be measured by multiple
indices including:

(1) The proportion of people having not been infected at the end of the model, indicating
the long-term effects of the policy;

(2) The peak number of clinical cases, corresponding to the burden of medical system,
and

(3) The reproduction number (R value) mentioned in Section 4.1.3, indicating the speed
of transmission.

On the other hand, to measure the cost of each policy, the Coverage Index is introduced
in the model. It uses the cumulative time of everyone affected by a certain policy
divided by the total population and duration of the model to show the average
proportion of time for each person being affected. The formula of Coverage Index is

I = oti
p NT
where CI, indicates the Coverage index of policy set p. The variable t; means the

C

time of the ith individual being affected by the policy set. N indicates the total
population and T means the duration of simulation model. Besides, some specific
policies deserve special attention. For example, in some cases the government requires
that the infected cases move to a unified isolation area, or total lockdown is applied to
some areas. In these cases, additional data of people affected by the policies will be

specifically recorded.

Finally, the spatial distribution of the infection over time will also be tracked, and the
link between the spatial configuration and the spread of pandemic will be primarily

analysed.
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5 Results of Simulation

5.1 Basic simulation

Firstly, the basic model described in Section 4.1 was run to show the trend of the
pandemic without any intervention. At the beginning of each model, 10 individuals at
the same segment were set into Exposed stage as the initial infected cases. The models
of both study areas were run 100 times independently. The trend of newly infected cases
and clinical cases for both study areas are shown in Graph 6. The trend of newly
infected cases is measured with the number of people who enters Exposed stage each
day. The thick lines in the graphs show the average of all 100 simulations, and other
lines are the results of some samples. It is clear that in Case London, the infection
quickly reaches the peak after approximately 1.5 months. The spatial distribution of the
infected in the end of 5™, 6™, 7™ and 8™ week of the first simulation of Case London
are shown in Figure 11. Each segment is marked with the proportion of people having
been infected. The location of the initially infected cases is also marked with points.
Due to the daily commute, the spatial spread of the pandemic does not follow spatial
proximity. The virus quickly spread into most of the communities in the first month and
caused citywide outbreak later. The infection got even worse through local movement

and household contacts. After the first two months, most people have been infected.
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Figure 11 Schematic Figure of the Spatial Process of Transmission

(Source: the author)
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5.2 Simulation of single citywide policies

To illustrate the policies simulated in this paper, the effects of several policies were
tested for Case London in this Section. The policies tested in the model are shown in
Table 10. In each simulation, a single policy was applied to the whole area. The first set
of policies is about isolation. From self-isolation and centralised isolation to regular
nuclear test, the degree of intervention increased step by step. Similarly, two scenarios
of wearing face masks were simulated. In one scenario, people wear face masks only
when they are outdoors, while in another scenario, they also wear face masks during
indoor activities. Other two policies from UK were also tested. The rule of six indicates
a limitation to gatherings, and the regional restriction is correspondent to the movement

restrictions applied during national lockdown of UK.

Simultaneously, the effect of time lag was also tested. Here, four sets of time for
triggering regulations are tested. Firstly, after the outbreak of the pandemic, it often
takes time for the government to assess specific circumstance and make decisions. Even
if people are alarmed in advance by the pandemic overseas, it is not reasonable that any
compulsory policy takes place before the pandemic actually occurs. In this case, it could
only be expected that non-mandatory recommendations such as wearing face masks or
keeping social distance may be announced in advance. However, since the obedience
cannot be guaranteed, these guidance or recommendations cannot form effective
protection for the country. Therefore, it is still necessary to test the impact of time lag
in executing policies. In this set of simulation, the time lag was regarded as the interval
between the time when the first clinical case was found to the announcement of
compulsory policies. As are shown in Table 11, several cases of time lag were tested,
where the policies were triggered immediately when the first clinical infection case was

found, or one week, two weeks or four weeks later.
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Table 10 Policies Tested Individually in the Model

(Source: the author)

Policy

Description

1-1 Self-isolation

1-2 Unified isolation

1-3 Centralised isolation +
regular nuclear test
2-1 Wearing face masks in

outdoor scenarios

2-2 Wearing face masks in
all scenarios.

3 Rule of six

Any individuals found with clinical symptoms are
isolated at home until recovery.

Clinical cases are moved to segregated isolation areas
and receive treatment immediately.

The above policy plus regular nuclear test every three
days.

The infection rate is reduced by 50% with the
utilisation of face masks. This applies with outdoor
contacts.

The protection of face masks applies with both indoor
and outdoor contacts.

The maximum number of contacts per At is limited to

5.
4 Lockdown. People are restricted at home for two months.
Table 11 Time Lags Tested in the Model
(Source: the author)

Time Lag Description
0 Policies are triggered once the first clinical case is found.
1 Policies are triggered one week after the first clinical case is found.
2 Policies are triggered two weeks after the first clinical case is

found.
4 Policies are triggered four weeks after the first clinical case is

found.
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5.2.1 Isolation policies

Firstly, the effect of self-Isolation, denoted as Policy 1-1, was tested. This is regarded
as a general policy, which indicates that any individuals found with clinical symptoms
are required to self-isolate at home until recovery. This is based on the policy which the
UK government announced on 12 March 2021 that anyone with coronavirus symptoms
should stay at home for at least 7 days. In this model, the correspondent Clinical stage
lasts for 3.5 days. After this stage, they would be neither infectious nor possible to be
infected. So, there is no difference between the UK policy and the action taken in the
simulation. In the simulation with Policy 1-1, any individual that enters Clinical stage
does not engage in the movement and contacts during the day, but is still possible to

infect the family members.

The trend of newly infected cases and clinical cases for both study areas are shown in
Graph 7. The curves of infection were flattened with lower peak and wider span. On
average, this policy significantly decreases the peak number of new infection and
clinical cases by 27% and 29%. However, the proportion of people having been infected
does not decrease significantly. Most of the people got infected at the end of the
simulation, although the process took longer time than that without any intervention.
Therefore, the application of self-isolation does not stop the pandemic from spreading

but only slowed down the transmission.

Afterwards, an enhanced version of the policy above was tested, where all clinical cases
are immediately sent to a specific segregation area and receive medical care and
treatment. This policy is based on Chinese policies and is denoted as Policy 1-2. The
difference between this policy and Policy 1-1 is that unified isolation cuts down any
way of transmission between the clinical cases and others, including potential
transmission at home. In this way, this policy is expected to have a better control over
the pandemic. However, as are shown in Graph 8, the average results are nearly the

same as those of Policy 1-1. This is because the impact of obedience is not considered
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in the simulation. It is always assumed that any policy is completely obeyed in the
simulation, but in reality, violation is still possible under the requirement of self-
isolation, so the effect of self-isolation policy is slightly overestimated. On the other
hand, since all clinical cases are moved to the hospital in the case of unified isolation,

unexpected transmission is less likely to happen.
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Besides, the expense of carrying out unified isolation should also be considered. Since
each clinical case are isolated, the number of people under unified isolation is the same
as the number of clinical cases shown in Graph 8. It can be expected that treating every
new clinical case applies more pressure to the medical system and public budget. If not
accompanied by other policies, the medical system will quickly be overwhelmed by

rapidly increasing patients.
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In the third case of Policy 1-3, another Chinese-based policy is applied besides the rule
of unified isolation. Every three days, everyone is required to take a nuclear acid test
and all infectious individuals, including ones in Preclinical, Clinical and Subclinical
stages, are detected, and moved to specific isolation areas. As is shown in Graphs 9 and
10, the spread of the pandemic is significantly slowed down compared to the results of
Policies 1-1 and 1-2. By broadening the range of detection and isolation, the sources of
infection are blocked more efficiently, resulting in the significant decrease of infection.
Therefore, it is surprising that although the range of isolation broadens from Clinical

cases to all infectious individuals, the number of people under isolation has in turn

decreased.
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Graph 9 Simulation Results of Policy 1-3 (a), Case London

(Source: the author)
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Graph 10 Simulation Results of Policy 1-3 (b), Case London

(Source: the author)

5.2.2 Wearing face masks

Secondly, the effect of wearing face masks was tested. This is realised by adjusting the

infection rate upon contact, so it can also represent any other intervention which does

not affect movements and gatherings, for example social distancing or disinfection.

Here two scenarios were considered. In the first scenario denoted as Policy 2-1, which

is common worldwide, everyone is required to wear face masks during outdoor

activities. However, they do not wear face masks when they work or study indoors, or

stay at home. In the second scenario denoted as Policy 2-2, everyone also wears face

masks during their stay at workspace or schools. In both scenarios, the average infection

rate per contact was assumed to be cut down from 2% to 1%, namely a half.
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Graph 11 shows the trend of the newly infected and clinical cases in the first scenario.
On average, the peak of the curve has been significantly decreased, showing that the
speed of the transmission has been greatly slowed down. However, people are not
protected during their indoor contact in workspace or schools in weekdays. So, the
performance of Policy 2-1 is similar to that of Policy 1-1 and 1-2, where only part of
potential virus transmission is blocked. Besides, lack of intervention with indoor
contacts also brings much uncertainty to the effect of Policy 1-1. It is shown in the
graph that there exist some cases where the peak of infection is almost the same as the

basic model without any intervention.

Graph 12 shows the result of the second scenario, where people are required to wear
face masks both indoors and outdoors. It is clear that the pandemic was supressed
significantly. Both the average effect and stability are better than the case where only
outdoor activities are protected. However, it is not often the case that this policy is
executed with complete obedience. Although the improvement may not be as much as
Policy 1-3, wearing face masks has its own advantages. Compared to other policies
which restricts movements or contacts, wearing face masks provides significant
protection while leaves the least effect on daily lives. In this way, wearing face masks
and other similar policies are the most economic when dealing with the pandemic and
should be primarily considered. The benefits and costs of other policies and especially

certain combinations of policies will be further discussed below.

5.2.3 Rule of six and overall lockdown

Finally, two policies based on the UK policies were tested. The Rule of six, denoted as
Policy 3, is that any gathering of more than six people is prohibited. In this model, this
policy was tested by applying the rule that anyone can only meet up to 5 other people
in every At. In this case, the effect of the policy might be overestimated because the
original rule does not limit the number of gatherings for an individual. It is possible that

one person meets 5 people for a short period of time and then goes immediately for
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another gathering of 5 other people, resulting in 10 effective contacts in a certain time

period, but this will not happen in the simulation. Graph 13 shows the trend of the newly

infected and clinical cases. It is shown that

supressed as previous cases.

the pandemic has been significantly
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Graph 11 Simulation Results of Policy 2-1, Case London

(Source: the author)
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(Source: the author)

Another policy denoted as Policy 4, lockdown, is self-explained. During the lockdown,
people are not allowed to leave home without a reasonable excuse. Although this policy
seems more effective than others, it would leave a great negative impact on the
economy and daily lives. Therefore, it cannot last for a long time. The total duration of

national lockdown in the UK was 27 weeks out of one year, which means that the
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Graph 13 Simulation Results of Policy 3, Case London

(Source: the author)

duration of lockdown takes up nearly half of the time. So, in this model, a simplified

rule

of regular lockdown is applied. From the beginning of Policy4, an overall

lockdown is executed every other two months, and each lockdown lasts for two months.

During the lockdown, all movements with long distances are cancelled. Since it is not

possible to stop all movements for months, necessary movements are still allowed in
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practice, for example movements for daily necessities. Therefore, in this model, one
movement within the segment per day is allowed for each individual, and people are

allowed to move around neighbouring segments on Sunday.
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* Lockdown periods are marked in dark backgrounds.

Graph 14 Simulation Results of Policy 4, Case London

(Source: the author)
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The results of simulation with Policy 4 are shown in Graph 14, where the periods of
lockdown are marked in dark backgrounds. It is shown that the peak of the infection
curve is significantly postponed, and the peak number of the infection slightly decreases
under the overall lockdown. The policy does not completely stop the transmission
because a few movements are still allowed. Although the transmission is controlled
during the weekdays, the virus keeps spreading on weekends. So, there is a large
fluctuation in the curve of newly infection of each sample, which is shown in light blue
curve in the graph. The average infection also shows a stepwise upward trend,
indicating a phased increase of infection. This simulation underestimates the
performance of the overall lockdown in reality, since the time when people go out is
focused on Sunday rather than scattered into all seven days of a week, leading to more

potential contacts.

5.3 Application of multiple policies

In this section, two sets of combined policies were tested on both Case London and
Case Beijing. These two policy sets are originated from the policies applied in the UK
and China. However, considering the fact that only part of policies was discussed in
this paper and lots of details were simplified in the simulation, the results cannot be
used to represent, evaluate, or judge the performance of the governments’ response to
the pandemic. In the real world, the policies depend on various circumstances such as
medical progress, public budget, or national economy. This paper only considers the

effects of policies on blocking the transmission.

As are shown in Table 12, various policies discussed in Section 5.2 are included in these
two sets. Since wearing face masks is always recommended during the pandemic, it is
included in both policy sets. Besides, Policy Set A requires self-isolation, rule of six
and movement restriction, aiming at reducing movements and contacts generally while

leaving the least impact on normal daily lives. Policy Set B tends to be stricter, requiring

53



regular nuclear acid test for everyone. Once an infectious case is found, an additional
nuclear acid test will be applied to people in the segment of the infection, and all
infectious individuals will be sent to a unified isolation area until recovery. Moreover,
all segments neighbouring to the segments where a case is found are locked down until
no new case is found for 14 days. Everyone in the lockdown areas cannot move out of
home, which equals to self-isolation. This set of policies aims at stopping the
transmission to the maximum degree and end the pandemic as soon as possible, so that
the economy and daily lives can go back on track. However, the process of coping with
the pandemic might have a great negative impact on normal daily lives, especially for
those who live in the segments locked down for a long time. It can be expected that the
duration of the pandemic may be longer than the scenarios discussed in Section 5.2
where only one policy is applied at a time, since the spread of the pandemic can be
slower under the restriction from multiple policies. So, the data of one year were tracked
in the simulation of this section. Since policies against the pandemic cannot be long-
term policies, they may be changed frequently according to the circumstances.
Therefore, it is not valuable to track the effects longer than one year. If the pandemic
ends within one year in any simulation, the model would stop along with the policy sets.

Correspondingly, the time lags tested are also adjusted to 0, 2, 4 and 6 weeks.

Table 12 Policy Sets Tested in the Model

(Source: the author)

Policy Set A Policy Set B

* Self-Isolation for clinical cases. * Unified isolation for all infectious
* Face masks required in all contacts. cases plus regular nuclear acid test.

* Maximum gathering of 6 people. * Lockdown and additional nuclear acid

* Overall lockdown for 2 months withan  test for neighbouring segments where
interval of 2 months. an infection is detected.

* Face masks required in all contacts.
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The results of simulation are shown in Graphs 15 to 26. To have them understood better,
the contents of graphs are shown in Table 13 ahead of all graphs. The horizontal axes
are stretched into one year and the vertical axes are also stretched, so the number of the
infection are actually better than the scenarios where only single policy is applied

although the curves in the graphs may seem high.

Table 13 Contents of Graphs Below

(Source: the author)

Content Case London Case Beijing
Policy A, New Infected Cases Graph 15 Graph 21
Policy A, Clinical Cases Graph 16 Graph 22
Policy B, New Infected Cases Graph 17 Graph 23
Policy B, Clinical Cases Graph 18 Graph 24
Policy B, Isolated Cases Graph 19 Graph 25
Policy B, Lockdown Coverage Graph 20 Graph 26
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Graph 17 Simulation Results of Policy Set B, Case London (a)
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6 Discussion

6.1 The effects of time lag to the performance of policies

Time lag plays an important role in controlling the spread of pandemic. Graphs 27 and
28 briefly show the average simulation results in the scenarios with single policy
applied in different time lags. With the increase of time when the policy starts to be

executed, the change of average infection curves is shown in gradually darker colours.

The effect of time lag can be discussed in several aspects. Firstly, the degrees of time
lag effects are different among policies. For most policies, the average infection curves
gradually move leftward when the lag of policy execution increases. Here, some special
cases should be noticed. The performance of Policy 1-3, which is regular citywide
nuclear acid test plus unified isolation, is very sensitive to the time lag. This also applies
to Policy 4, or the regular overall lockdown. On the other hand, Policy 3, namely the

rule of six, has little change among different time lags.

Then, the effect of time lag can be interpreted along two axes in the graphs. Comparing
the average infection curves of the basic model and the model with policies, it can be
concluded that the policies affect the infection curve in two aspects during the process
of slowing down the transmission. On the one hand, the peak number of infections
decreases with the execution of effective policies, resulting in the downward movement
of the infection curve. On the other hand, the time of the infection peak is postponed
by the policies, resulting in the rightward movement of the infection curve. Specifically,
this also applies to Policy 4. Considering that Policy 4 is not executed throughout the
simulation, the part of curves in the overlapping period of lockdown (shown with dark
background) among various time lags shows the same trend as the scenarios of other

policies.
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In this way, the effect of policies against the pandemic on the infection curve can be
divided into two dimensions, namely the number and time of the infection peak. In turn,
the time lag in execution weakens the effect of policies and makes the infection curve
gradually moves back to the shape of the basic model. With more lag in execution, the
peak of the infection curve comes earlier, and the peak number becomes higher. It can
be expected that if the time lag is infinite, the infection curve will be the same as that

in the basic model, because no policy is actually executed.

250000 | Case London 400000 | Case London
_— New infected cases Clinical Cases
Policy: 1-1 00000 1 Policy: 1-1
150000 }
200000 F
100000 |
50000 | 100000 |
0 0
NS RRARTSARB8RREBA8888R TP IS RRARTCART8RRE 8888 SR
Lag0 lagl ——lag2 ——Llag4 Lag0 lagl =———lag2 ——Llagd
250000 1 Case London | Case London
— | New infected cases Clinical cases
Policy: 1-2 00000 - Policy: 1-2
150000 }
200000 |
100000 }
50000 | 100000 }
0 0
TCHCRRARTYRST8RREBARE8 ISR e RRARTCASEBRRE 888 8T
Lag0 lagl ———lag2 =——lagd Lag0 Lagl ———lag2 e——Lagd
50000 1 Case London a00000 | Case London
200000 | New infected cases Clinical cases
. 300000 } -
— Policy: 1-3 Policy: 1-3
200000 F
100000 f
50000 | 100000 }
0 0

-0 Y © o O O 4 QO oYY o © © 0
= ~ ] SOHhwBORND BN © ~ @ o

101
106
111
116
121

= = - - 0 o o = =
N o = nwn o ~ & &

101
106
111
116
121

Lago lagl ———lag2 ——lag4 Lag0 lagl ———lag2 =——lagd

Graph 27 Time Lag Effects of Single Policies (a), Case London

(Source: the author)
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6.2 Differences in policies

Graphs 29 and 30 briefly show the average results of Policy Set A and B with different
time lags in Case London and Beijing. Overall, both policy sets are efficient in
controlling the spread of pandemic within an acceptable time lag of execution,
compared to the scenarios where only single policy is applied or the basic model
without any public intervention. However, Policy Set B, characterised by stricter,
spatial specific lockdown, tends to perform better than Policy Set A, characterised by
more gentle, global control over the pandemic. In the results of Policy Set A in both
cases, there is a significant rebound in the trend of infection between two periods of
overall lockdowns. However, Policy Set B controls the speed of transmission to a

stabler, lower level.

Detailed statistical indices of the simulation results are shown in Tables 14 and 15.
Three indices of the controlling performance of policies, including the proportion of
people free from infection after one year, the peak proportion of clinical cases in total
population, and R value, prove that Policy Set B has a better controlling effect than
Policy Set A. In the aspect of costs, the coverage indices of Policy Sets A and B cannot
be directly compared. Although the coverage of Policy Set B is less, meaning that
people are less affected by the policies, the restrictions themselves in Policy Set B are

stricter than those in Policy Set A.
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Table 14 Statistical Indices of Policy Set A

(Source: the author)

Case Time Population Peak of R Self- Overall

Lag Free from Clinical Value Isolation Lockdown

(weeks) Infection Cases Coverage Coverage
London 0 41.06% 2.36% 1.466 0.28% 50%
London ! 34.19% 2.72% 1.56 0.32% 50%
London 2 30.33% 2.59% 1.622  0.33% 50%
London 4 32.05% 4.14% 1.594 0.33% 50%
Beijing 0 33.58% 1.59% 1.57 0.32% 50%
Beijing 1 33.32% 1.53% 1.572  0.32% 50%
Beijing 2 32.81% 4.61% 1.58 0.32% 50%
Beijing 4 2.44% 20.56% 2478 0.47% 50%

Table 15 Statistical Indices of Policy Set B
(Source: the author)

Case Time Population Peak of R Unified Regional

Lag Free from Clinical Value Isolation Lockdown

(weeks) Infection Cases Coverage Coverage
London 0 99.73% 0.004%  1.056 0.004%  0.47%
London ! 99.17% 0.02% 1.148  0.01% 1.42%
London 2 98.30% 0.09% 1.09 0.02% 2.32%
London 4 77.15% 4.15% 1.53 0.66% 32.04%
Beijing 0 86.06% 0.48% 1.16 0.15% 22.82%
Beijing 1 85.88% 0.49% 1.16 0.15% 22.96%
Beijing 2 81.42% 4.76% 2.34 1.05% 28.32%
Beijing 4 5.64% 20.56% 3.564 2.63% 23.08%

74



6.3 Differences in cases

Besides, differences can also be found between Case London and Case Beijing. Given
the same policy set and time lag, it is more difficult to control the pandemic in Case
Beijing. On the one hand, both policy sets have poorer performance but higher side
effects in Case Beijing compared to Case London. On the other hand, the performance
of policies in Case Beijing is more sensitive to the change in time lag. In Case London,
when the time lag increased to six weeks, the transmission gets completely out of
control, and most people have been infected before the policies are taken into action.
For Case Beijing, the time lag where most people get infected before policies is as short

as four weeks.

Here two assumptions are raised to explain the difference. Firstly, the population
density is higher in Case Beijing than Case London. In the simulation model, the
average population per residential segment is 6.253 in Case London and 10.679 in Case
Beijing. Secondly, in the simulation model, people living in Case Beijing need to walk
longer to reach the nearest station for public transport, leading to more chances of
contact and infection during daily commute. Figures 12 to 15 show the topological step
depth and metric distance from each segment to the nearest segment with public
transport stations. The average step depth in Case London is 2.50, and the average
metric distance is 210m. The average step depth in Case London is 4.89, and the average

metric distance 1s 616m.
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7 Conclusion

7.1 Key findings

In this paper, the transmission process of pandemic was simulated on the segment maps
of two case areas. Based on this, the effects of several policies against the pandemic
were tested. Simulation results prove that the performance of policies on controlling
the pandemic are affected by multiple factors including case areas, the combination of

policies and time lag of executing policies. The main findings are listed below.

Time lag effects of policy execution

(1) The eftect of time lag in execution varies among different policies.

(2) On the dimension of time, the peak of the infection curve comes earlier as the lag
increases.

(3) On the dimension of number, the peak number of the infection becomes higher as

the lag increases.

Performance of two policy sets

(1) Policy Set B, characterised by stricter, spatial specific lockdown, performs better in
controlling the pandemic with acceptable side effects than Policy Set A, characterised
by more gentle, global control over the pandemic.

(2) The performance of policies is relatively stable with different time lags of execution
before the threshold where the transmission gets out of control before application of

policies.

Difference in case areas
(1) The transmission of pandemic is faster in Case Beijing than Case London given the
same infection rate in simulation, leading to worse performance of policies and earlier

threshold of the time lag.
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(2) It is assumed that the difference between Case London and Case Beijing originates
from the differences in population density and average distance to nearest public

transport stations.

7.2 Implication

The main significance of this paper is that a spatial-based method of simulating the
pandemic is introduced. Here, space is no longer a statistical concept containing
contacts among people but returns to its nature of supporting movements and usage.
Contact also returns to its nature, namely the product of movements and encounters.
Based on this model, a series of indices for quantifying the performance of policies are

also introduced, making it possible to test the effect of spatial-related policies.

The comparison between two sets of policies shows that in ideal scenarios, it is feasible
to apply strict intervention within a small range where infections happen. If the
pandemic could be stopped within a short period of time, the side effects caused by
stricter policies may even be less than the case where gentler but less effective policies
keep being applied for a long time. This finding actually constitutes theoretical support
for the Chinese policy against the pandemic in the early period, which is often criticised
by its strictness. However, considering other social and economic factors, it is not
feasible for every country to act the same. It should also be noticed that the city is not
an enclosed system in the real world. Faced with global pandemic, the duration of fight
against the pandemic is often longer than expected, and the side effect of stricter
policies may rapidly increase over time. Therefore, non-pharmaceutical interventions
should be treated as temporary measures to win more time for medical progress, rather
than the ultimate solution to be relied on in the long run. Besides, the results also
emphasise the importance of time. The quicker the government takes action, the less

cost is paid for the pandemic.
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7.3 Research deficiencies and prospects

Technically, several factors are simplified due to lack of data or the restriction of
hardware. For example, a newly published study pointed out that the risk of infection
is related to the duration when one is exposed to the virus (Oza, 2023). Therefore, more
factors can be included in the system of determining effective contacts and calculate
probabilities of infection. Moreover, the movements of individuals are also simplified
into fixed random patterns, but there are more varieties in movement patterns and

spatial usage. It is also possible that behaviours may be affected by the pandemic.

As for the framework, although this study proposed a spatial-based simulation model
of the pandemic, the link between spatial usage and the transmission is yet to be
implemented. Whether or not the space still matters on the background of pandemic is
worthy of further exploration. Besides, this study focuses on the transmission of
pandemic, but public policies are determined by multiple factors, for example political
issues, public budget, or other socio-economic pressures. With more cities included and
more factors taken into consideration in the future, this model will be more helpful for

providing reference for public medical emergencies.
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Appendix I Chinese Terminology

The terms marked with * are not the official English names of corresponding Chinese

terms. They are translated by the author and are only used in this paper.

Term Chinese Definition or Description

Close contact* F People who have had direct contact or
copresence with infected cases. They are facing
the risk of being infected with COVID-19.

Covid-19 Prevention and iR %R An official document published by National

Control Guideline* Mt 28 Bi#% 77 Health Commission of the People’s Republic of

%) China, acting as the main guideline of policies

against COVID-19 in China.

District X, & A level of administrative division below the

(High/Medium/Low) Risky
Areas*

National Health
Commission of the People’s
Republic of China

National Metadata Pass*

Official Press Conferences
on COVID-19 in Beijing

Risk Grading Standards for
Covid-19 in Beijing*

Risky Status*

Sub-District

WeChat

Cr/mP AR K
I [X

i N RE A
] o A
R A=
A5 K HHEAT
R

A 50T B e A
REHPIE T
VEB I AT 2=

(Aemtrigd
fili ¢ 22 155 A S
Iy ARIED
USRS

thiE, 2, ®,
HlX
(E4G

city.

Official updated data indicating the areas facing
the threat of COVID-19. They are usually
divided into 3 levels.

The national for

department responsible

medical issues in China.

An official metadata platform for analysing the
risk of being infected of an individual through
movement traces. This is used for entry
permission to public indoor spaces.

A set of press conferences held by the
government of Beijing for updating the
dynamics of infected cases and relevant
policies.

An official document published by the
government of Beijing, including the detailed
rules of division of Risky Areas in Beijing.

A term by the author for the colour of National
Different
colours indicate different levels of risk of being

Metadata Pass of an individual.

infected.
A level of administrative division below the
district.

A social application popular in China.
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Appendix II Code Realisation of Simulation

The simulation model is realised with Python 3.11.
Simulation

Main9.py

nm
Version Change:

1. Basic model for small area.

2. Numpy and iGraph introduced.

3. Trial on pre-computation.

4. Means of transport introduced.

5. Change from class to function and vectorisation applied.
6. Change on basic logic for full speed.

7. Multiprocessing method introduced.

8. Policies introduced.

9. Code refactoring.

"

import time

import numpy as np

import json

from multiprocessing import Pool

from multiprocessing.shared memory import SharedMemory
from multiprocessing.managers import SharedMemoryManager
from Const import *

from Simulation import simulation

def base(_ss=0, city=0, p=None, loc="): # fixed seed

# speed test
_start = time.time()

# columns: 0.origin, 1.geoid, 2.population per segment (divided by 10)
segment = np.loadtxt(PRE_FILE[ city]['segment'], delimiter='',
skiprows=1, dtype="int32', encoding="utf-8', quotechar="")
_segment len = segment.shape[0]
_population = int(segment][:, 2].sum())

# list of segments as origins
origins = segment[segment[:, 0] == 0, 1]

# Shared memory 1 of 2
with SharedMemoryManager() as smm:

# input parameters including seed, city and policies
_sm0 = SharedMemory('parameters', True, 28)
_seed = np.ndarray((7,), 'int32', sm0.buf)
_seed[:]=[_ss+ 1000, city] + list(_p)

nin

Each parameter in policy0:
0: policy trigger.

1: isolation policy.

2: face masks.

3: gathering policy.
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4: lockdown policy.

# sm8 = SharedMemory('policy0', True, 20) # policy and trigger
# _policy0 = np.ndarray((5,), 'int32', _sm8.buf)

# policy0[:] = p

_temp = int(np.sum(segment[:, 0] == 1))

_sml = SharedMemory('destinations', True, temp * 4)
_destinations = np.ndarray((_temp,), 'int32', sml.buf)
_destinations[:] = segment[segment[:, 0] == 1, 1]

# population of each segment

_sm2 = SharedMemory('region’, True, segment len * 4)
_region = np.ndarray((_segment len,), 'int32', sm?2.buf)
_region[:] = segment][:, 2]

_sm3_1 = SharedMemory('station path index', True, (_segment len + 1) * 4)
_s_index = np.ndarray((_segment len + 1,), 'int32', sm3 1.buf)

_sm4_1 = SharedMemory('neighbours index', True, (_segment len + 1) * 4)
_n_index = np.ndarray((_segment len + 1,), 'int32', sm4 1.buf)

~sm5 = SharedMemory('sample', True, population * 20)

# attributes fixed for each individual in sample

# columns: 0.Age, 1.Home, 2.Work/School, 3.Car, 4.Household
_sample = np.ndarray((_population, 5), 'int32', _sm5.buf)

_sm6 = SharedMemory('status', True, population * 12)
# changing status of individuals in sample

# 0.Status, 1.Count, 2.Location

_status = np.ndarray((_population, 3), 'int32', smé6.buf)

# read all paths from segment to the nearest station
origin s path =[]
_count =0
with open(PRE_FILE[ city]['station path'], 't") as f:
for a, line in enumerate(f):
s index[a] = count
_temp = json.loads(line)
origin_s path += temp
_count += len(_temp)
s index[-1] = len(origin_s path) + 1

# read list of neighbours for all segments
origin n path =[]
_count=0
with open(PRE_FILE[ city]['neighbours'], '') as f:
for a, line in enumerate(f):
_n_index[a] = count
_temp = json.loads(line)
origin n_path += temp
_count += len(_temp)
_n_index[-1] = len(origin_n_path) + 1

# Shared memory 2 of 2
with SharedMemoryManager() as smm:

_sm3 = SharedMemory('station path', True, len(origin_s_path) * 4)
_station_path = np.ndarray((len(origin_s_path),), 'int32', sm3.buf)
_station_path[:] = origin_s path

_sm4 = SharedMemory('neighbours', True, len(origin_n_path) * 4)
_neighbours = np.ndarray((len(origin_n_path),), 'int32', sm4.buf)
_neighbours[:] = origin_n_path

_sm7 = SharedMemory('household', True, 4)  # number of household
_household = np.ndarray((1,), 'int32', sm?7.buf)

# sample initialisation

"

Here we assume that there are several stages for each individual.
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0.Susceptible, where one is healthy and moves daily.

1.Exposed, where one is effectively infected while is not infectious. An exposed person is 50% likely to enter
Preclinical and then clinical stage, while 50% to Subclinical stage with 50% ability of infection.
2.Preclinical, where one is infected and infectious.

3.Clinical

4.Subclinical

5.Removed, where one is recovered or dead and is removed from the model.

# random number generator (seed fixed for basic sample)

_ g = np.random.default rng(seed=_ss)

_status[:, 1]=-1
_sample[:, 0] = rmg.choice(3, population, p=AGE[ city]) # age assigned
—count=0 #used in people creation
for a in range(len(origins)):
_temp=0 #record the number of people in the current household
for j in range(segment[origins[a], 2]):
_sample[ count, 1] = origins[a]
# household assigned

if _rng.random() > HOUSEHOLD_SIZE[ city][_temp]:

_temp += 1
else:

~household[0] += 1

_temp =1
_sample[ count, 4] = household[0]
_count += 1

~household[0] += 1
_status[:, 2] = sample[:, 1]
_sample[:, 2] = sample[:, 1]

# car assigned

_sample[ rng.random(_population) < 0.5, 3] =1

# work place or school assigned

_temp = _sample[:, 0] <2

_sample[ temp, 2] = rng.choice(_destinations, np.argwhere(_temp).shape[0])

# simulation(0)

core =10
with Pool(10) as pool:
pool.map(simulation, range(core))

print('Simulation model ended in {} seconds. seed = {}'.format(time.time() - _start, _ss))

# summarising
_summary = np.loadtxt(r'Log\temp\summary0.txt', delimiter=",', skiprows=1, dtype="int32', encoding="ut{-8'")
for a in range(1, core):
_temp = np.loadtxt(r'Log\temp\summary { } .txt'.format(a), delimiter=",', skiprows=1, dtype='int32',
encoding="utf-8")
if temp.shape[0] > summary.shape[0]:
_summary = np.append(_summary, np.tile(_summary[-1], (_temp.shape[0] - summary.shape[0], 1)),
0)
else:
_temp = np.append(_temp, np.tile(_temp[-1], (_summary.shape[0] - _temp.shape[0], 1)), 0)
_summary += _temp

# distribution
_distribution = np.loadtxt(r'Log\temp\distribution0.txt', delimiter=',", skiprows=1, dtype="float64',
encoding="utf-8")
if len(_distribution.shape) == 1:
_distribution = _distribution.reshape((_distribution.shape[0], 1))
for a in range(1, core):
_temp = np.loadtxt(r'Log\temp\distribution { } .txt'.format(a), delimiter=",", skiprows=1, dtype='int32',
encoding="utf-8")
if len(_temp.shape) == 1:
_temp = _temp.reshape((_temp.shape[0], 1))
if temp.shape[1] > distribution.shape[1]:
_distribution = np.append(_distribution,
np.tile(_distribution[:, -1], (_temp.shape[1] - _distribution.shape[1],
1).T, 1)
else:
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_temp = np.append(_temp, np.tile(_temp[:, -1], (_distribution.shape[1] - _temp.shape[1], 1)).T, 1)
_distribution += _temp
for a in range(_segment len):
if segment[a, 2] 1= 0:
_distribution[a] /= 10 * segment[a, 2]

# abstract daily summary by rows (t =0, 4, 8, ...)
_temp = np.empty((_summary.shape[0] // 4 + 1, 4), 'int32")
for a in range(_temp.shape[0] - 1):
_temp[a] = summary[a * 4, [0, 3, 6, 7]]
_temp[-1] = summary[-1, [0, 3, 6, 7]]
# abstract daily summary by columns (newly infected cases, current clinical cases)
_brief=_temp.copy()
_brief[0] = [0, 0, 0, 0]
for a in range(1, _brief.shape[0]):
_brief[a, 0] = temp[a - 1, 0] - temp[a, 0]

_temp = time.strftime('%Y %om%d-%H%M%S")
with open(r'Log\log.txt', 'a+') as f:
f.write("Write log of seed {} at {}.\n'.format(_ss, temp))

np.savetxt(r'Log\{ } summary\summary-seed { } .txt'.format(loc, ss), summary, fmt="%d', delimiter=",',
header="Susceptible, Exposed, Preclinical, Clinical, Subclinical, Removed')

np.savetxt(r'Log\{ } distribution\distribution-seed { } .txt'.format(loc, ss), distribution, fmt="%.3f,
delimiter=",', header="Week")

np.savetxt(r'Log\{ }brief\brief-seed { } .txt'.format(loc, ss), brief, fmt="%d', delimiter="',
header="New cases, Current clinical cases')

if name ==' main "
base(0, City.BEIJING, (0, 0, 0, 0, 0), r"Backup2\BR-lag4\\")

Simulation.py

import time

import numpy as np

from multiprocessing.shared_memory import SharedMemory
from Const import *

def simulation(number=0):  # sub-model id

start = time.time()
print('Sub-Model #{} started.'.format(number))

# pass data

sm0 = SharedMemory('parameters', False)
ss = np.ndarray((7,), 'int32', sm0.buf)

city = ss[1]

policy0 = ss[2:]

sml = SharedMemory('destinations', False)
destinations = np.ndarray(MEMORY _SIZE[city]['destinations'], 'int32', sm1.buf)

sm2 = SharedMemory('region', False)
region = np.ndarray(MEMORY _SIZE[city]['region'], 'int32', sm2.buf)

sm3 = SharedMemory('station path', False)
station_path = np.ndarray(MEMORY _SIZE][city]['station path'], 'int32', sm3.buf)

sm3_1 = SharedMemory('station path index', False)
s_index = np.ndarray(MEMORY _SIZE[city]['station_path index'], 'int32', sm3_1.buf)

sm4 = SharedMemory('neighbours', False)
neighbours = np.ndarray(MEMORY _SIZE[city]['neighbours'], 'int32', sm4.buf)

sm4 1 = SharedMemory('neighbours index', False)
n_index = np.ndarray(MEMORY _SIZE[city]['neighbours_index'], 'int32', sm4_1.buf)

sm5 = SharedMemory('sample', False)
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base_sample = np.ndarray(MEMORY _SIZE[city]['sample'], 'int32', sm5.buf)

sm6 = SharedMemory('status', False)
base_status = np.ndarray(MEMORY _SIZE[city]['status'], 'int32', sm6.buf)

sm7 = SharedMemory('household', False)
household = np.ndarray((1,), 'int32', sm7.buf)[0]

# random number generator (seed fixed for infected cases)

rngl = np.random.default_rng(seed=ss[0])

# internal random number generator (seed not fixed for randomness)
rng = np.random.default rng(seed=0)

policy = np.array([0, 0, 0, 0], 'int32")
# trigger for announce policies (-2: not triggered yet; -1: having triggered)
if policy0[0] == -1:
trigger =0 # trigger policy immediately
else:
trigger = -2
# infection rate of wearing masks
mask out, mask in=0.98, 0.98
sample = base_sample.view()
status = base status.copy()
population = sample.shape[0]

# fixed route in weekdays
trace = np.empty(population, dtype=object)
for i in range(population):
if sample[i, 0] < 2:
if samplef[i, 3]:
trace[i] = samplel[i, [1, 2]]
else:
temp1 = sample[i, 1]
temp2 = sample[i, 2]
trace[i] = np.append(station_path[s_index[templ]:s_index[templ + 1]],
station_path[s_index[temp2]:s_index[temp2 + 1]])
else:
templ = sample[i, 1]
trace[i] = neighbours[n_index[templ]:n_index[temp] + 1]]

# set the initial case as exposed

temp = rngl.choice(population)

infective = np.ones(population, dtype='int32")  # distinguish how infectious one is
status[temp, [0, 1]] =[1, 16]

# parameters in order: Susceptible, Exposed, Preclinical, Clinical, Subclinical, Removed
summary = np.array([[population - 1, 1, 0, 0, 0, 0, 0, 0]], dtype="int32")

# record spatial distribution of infected in wd_spread()

distribution = np.empty((SEGMENT LEN]city], 0), 'int32")

# weekday history

wd_spread0 = np.zeros((SEGMENT _LEN([city],), 'int32")  # weekday newly infected person (for record)
wd_spreadl = np.zeros((SEGMENT LEN(city],), 'int32") # weekday spread in time 1 and 3
wd_spread2 = np.zeros((SEGMENT _LEN(city],), 'int32") # weekday spread in time 2

h_infection = np.zeros((household,), 'int32")  # infection in each household

# pre-computation

wd_spreadO[sample[temp, 1]] += infective[temp]

wd_spread2[sample[temp, 2]] += infective[temp]

wd_spread][trace[temp]] += infective[temp]

h_infection[sample[temp, 4]] += infective[temp]

#isolation region with columns: 0.status, 1.time, 2.home
isolation = np.zeros((0, 3), 'int32")

# local lockdown (time limited; -1 if not locked)
lockdown = np.zeros((SEGMENT _LEN]city],), 'int32")
lockdown -= 1

# national lockdown

all lock =-1

t=0
total pop = population # rotal population
w_deviation = rngl.choice(7) # create randomness for the day when the infected individual was introduced
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# main loop
while summary[t, 0] != population and t < 1460:  # one year

t+=1
period =t % 4
weekday = ((t / 4 + w_deviation) % 7) // 5

# print(summary[-1])
# print(‘Sub-Model #{} Time:{} Period:{} Weekday:{}' format(number, t, period, weekday))

# create and record movement

# shortcut: if there is no infectious or infected person, the process of creating movement is skipped
if summary[t - 1, 0] > 0 and summary[t - 1, 2:5].sum() > 0:

4DL 1]=1

# list of numbers of infected visitors in each segment
spread = np.zeros(SEGMENT_LEN(city], dtype='int32")
# sort individuals by the infectious and susceptible
if policy[0] > 3 and period !=0:  # remove those who are in the lockdown area
temp = np.isin(sample[:, 1], np.argwhere(lockdown < 0).flatten())
_filter = [np.argwhere(np.logical and(temp, status[:, 0] > 1)).flatten(),
np.argwhere(np.logical and(temp, status[:, 0] == 0)).flatten()]
else:
_filter = [np.argwhere(status[:, 0] > 1).flatten(), np.argwhere(status[:, 0] == 0).flatten()]

# national lockdown
ifall_lock == 0:
all lock =480 # return normal for 2 months
temp = sample[:, 0] <2
temp2 = np.logical and(temp, status[:, 0] > 1)
wd_spread2[sample[temp2, 2]] += infective[temp2]
wd spread2[sample[temp2, 1]] -= infective[temp2]
for i in np.argwhere(temp).flatten():
if status[i, 0] > 1:
wd spreadl[trace[i]] -= infective[i]
if sample[i, 3]:
trace[i] = sample[i, [1, 2]]
else:
templ = sample[i, 1]
temp2 = sample[i, 2]
trace[i] = np.append(station_path[s_index[templ]:s_index[temp]l + 1]],
station_path[s_index[temp2]:s_index[temp2 + 1]])
if status[i, 0] > 1:
wd_spread][trace[i]] += infective[i]
all_lock =1
elif 0 <all lock <241: # national lockdown
if all lock == 240:
temp = sample[:, 0] <2
temp2 = np.logical_and(temp, status[:, 0] > 1)
wd_spread2[sample[temp2, 1]] += infective[temp2]
wd_spread2[sample[temp2, 2]] -= infective[temp2]
for i in np.argwhere(temp).flatten():
if status[i, 0] > 1:
wd_spread][trace[i]] -= infective[i]
templ = sample[i, 1]
trace[i] = neighbours[n_index[temp1]:n_index[temp]l + 1]]
if status[i, 0] > 1:
wd_spread][trace[i]] += infective[i]

weekday = 0
all lock =1
elif all lock > 240:
all_lock =1
if weekday == 0:  # weekdays
if period ==0: # 0-6am stay at home

status[_filter[1][
rng.random(_filter[1].shape[0]) > BASIC RATE ** (h_infection[sample[_filter[1],

elif period ==2:  # /2am-6pm
temp = sample[_filter[1], 2]
temp = wd_spread2[temp] * (lockdown[temp] < 0)
if policy[2] > 0:
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temp[temp > 10] = 10
status[_filter[1][rg.random(_filter[1].shape[0]) > mask in ** temp], 1] =1
elif all lock <1 orall lock >240 or ((t// 4 +w _deviation) % 7) // 6 == 1. # 6-12am or 6pm-

Oam
temp = np.empty(_filter[1].shape[0], dtype='float64")
for i in range(_filter[1].shape[0]):
temp1 = trace[_filter[1][i]]
temp[i] = (wd_spreadl[templ] * (lockdown[temp1] < 0)).sum()
if policy[2] > 0:
temp[temp > 10] = 10
status[_filter[1][rng.random(_filter[1].shape[0]) > mask out ** (temp / BETA)], 1]=1
else: #weekend
if period ==0:  # 0-6am stay at home
status[_filter[1][
rng.random(_filter[1].shape[0]) > BASIC_RATE ** (h_infection[sample[_filter[1],
41D], 11=1
elif period ==3:  # 6pm-Oam go back home
# the infectious
foriin _filter[0]:
# function: move home
target = sample[i, 1]
if target == status[i, 2]:  # already home
spread[target] += infective[i]
elif sample[i, 3]:
spread|[status[i, 2], target]] += infective[i]
else:
temp = status][i, 2]
spread[np.append(station_path[s_index[temp]:s_index[temp + 1]],
station_path[s_index[target]:s_index[target + 1]])] +=
infective[i]
status[_filter[0], 2] = sample[ filter[0], 1]
# the susceptible
temp = np.empty(_filter[ 1].shape[0], dtype='float64")
for i in range(_filter[1].shape[0]):
# function: move_home
target = sample[ _filter[1][i], 1]
if target == status[_filter[1][i], 2]: # already home
templ = target
elif sample[_filter[1][i], 3]: #car
templ = [status[_filter[1][i], 2], target]
else:
templ = status[_filter[1][i], 2]
templ = np.append(station_path[s_index[temp1]:s_index[temp]l + 1]],
station path[s index[target]:s index[target +
1)
temp[i] = (spread[temp1] * (lockdown[temp1] < 0)).sum()
status[_filter[1], 2] = sample[ filter[1], 1]
if policy[2] > 0:
temp[temp > 10] = 10
status[_filter[1][rng.random(_filter[1].shape[0]) > mask out ** (temp / BETA)], 1] =1
else:  # 6am-6pm
# the infectious
temp = rng.choice(2, filter[0].shape[0]) # random move: 50% free and 50% targeted
foriin _filter[0][temp == 0]:
temp1 = status[i, 2]
spread[neighbours[n_index[temp1]:n_index[temp] + 1]]] += infective[i]
foriin _filter[0][temp == 1]:
# function: targeted move
target = rng.choice(destinations)
if samplef[i, 3]:
spread[[status[i, 2], target]] += infective[i]
else:
templ = status[i, 2]
spread[np.append(station_path[s_index[temp1]:s_index[templ + 1]],
station_path[s_index[target]:s index[target + 1]])] +=
infective[i]

status[i, 2] = target
# the infected
temp = rng.choice(2, filter[1].shape[0])
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tt = np.empty(_filter[1].shape[0], dtype='float64")
for i in np.argwhere(temp == 0).flatten():
temp1 = status[_filter[1][i], 2]
templ = neighbours[n_index[templ]:n_index[temp]l + 1]]
tt[i] = (spread[temp1] * (lockdown[temp1] < 0)).sum()
for i in np.argwhere(temp == 1).flatten():
# function: targeted move
target = rng.choice(destinations)
if sample[i, 3]:  #car
templ = [status[i, 2], target]
else:
templ = status[i, 2]
templ = np.append(station_path[s_index[templ]:s_index[templ + 1]],
station_path[s_index[target]:s index[target +

tt[i] = (spread[temp1] * (lockdown[temp1] < 0)).sum()
status[i, 2] = target
if policy[2] > 0:
ttftt>10] =10
status[_filter[1][rng.random(_filter[1].shape[0]) > mask out ** (tt/ BETA)], 1] =1

# update isolation area
# print(isolation)
isolation[:, 1] =1
isolation[np.logical and(isolation[:, 0] == 2, isolation[:, 1] == 0), :2] =3, 14]
if policy[0] == 1:

for i in np.argwhere(isolation[:, 1] == 0).flatten():

h_infection[isolation[i, 2]] -= 5 - isolation[i, 0] # equals to 2 if clinical or I if subclinical

isolation = isolation[isolation[:, 1] > 0]

# update lockdown
lockdown = 1

# update status

status[:, 1] -=

# enter next stage (for status != 1)

templ = status[:, 1]==0

temp2 = np.logical and(templ, status[:, 0] == 0)

status[temp2, 2] = sample[temp2, 1] # send those who enters exposed stage home

# change sample
temp2 = status[:, 0] =1
status[np.ix_(templ, [0, 1])] = np.array([[1, 16], [1, O], [3, 14], [5, -1], [5, -1]])[status[temp1, O]]

# enter next stage (for status == 1)

templ = np.logical and(templ, temp2)

status[np.ix_(templ, [0, 1])] = rng.choice([[2, 6], [4, 20]], temp1.sum())
temp2 = np.logical and(status[:, 0] == 2, status[:, 1] ==0)
infective[temp2] = 2

# pre-compute (add)
wd_spread0 += np.bincount(sample[temp], 1], None, SEGMENT LEN]city]).astype('int32')
wd_spread2 += np.bincount(sample[templ, 2], infective[templ], SEGMENT LEN][city]).astype('int32")
for i in np.argwhere(temp1).flatten():
wd_spreadl[trace[i]] += infective[i]
h_infection += np.bincount(sample[temp1, 4], infective[temp]], household).astype('int32")
# pre-compute (delete)
if policy[0] > 0:  # delete those who enters clinical stage or are removed
temp2 = status[:, 0] ==3  # records to be moved to isolation area
temp3 = status[:, 0] ==5 # used in home isolation
if policy[0] ==3 and (t + 1) % 12==0:
temp2 = np.logical_and(status[:, 0] > 1, status[:, 0] <5)
elif policy[0] > 3:
if(t+1)%12==0:
temp2 = np.logical and(status[:, 0] > 1, status[:, 0] <5)
else:
temp2 = np.logical and(np.logical and(status[:, 0] > 1, status[:, 0] <5),
np.isin(sample[:, 1], sample[temp2, 1]))
# lockdown
temp =[]
for i in sample[temp2, 1]:
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1), 0)

temp += neighbours[n_index[i]:n_index[i + 1]].tolist()
# send those who are in lockdown area home
templ = np.isin(sample[:, 1], temp)
status[temp1, 2] = sample[temp], 1]
lockdown[temp] = 55

# isolation
isolation = np.append(isolation, np.append(status[np.ix_(temp2, [0, 1])].reshape((np.sum(temp2), 2)),
sample[temp2, 1].reshape((np.sum(temp2), 1)),

templ = np.logical or(temp2, temp3) # records to remove
if policy[0] == 1:
h_infection -= np.bincount(sample[temp3, 4], infective[temp3 ], household).astype('int32')
else:
h_infection -= np.bincount(sample[temp1, 4], infective[temp1], household).astype('int32")
else:
templ = status[:, 0] >4
h_infection -= np.bincount(sample[temp1, 4], infective[temp1], household).astype('int32")
wd_spread2 -= np.bincount(sample[temp]1, 2], infective[templ], SEGMENT _ LEN]city]).astype('int32")
for i in np.argwhere(temp1).flatten():
wd_spreadl[trace[i]] -= infective[i]

# remove item

sample = np.delete(sample, temp1, 0)
status = np.delete(status, temp1, 0)

trace = np.delete(trace, templ, 0)
infective = np.delete(infective, templ, 0)
population = sample.shape[0]

# summary of the day

summary = np.append(summary, np.array([[
len(status[status[:, 0] == 0]),
len(status[status[:, 0] == 1]),
len(status[status[:, 0] == 2]) + len(isolation[isolation[:, 0] == 2]),
len(status[status[:, 0] == 3]) + len(isolation[isolation[:, 0] == 3]),
len(status[status[:, 0] == 4]) + len(isolation[isolation[:, 0] == 4]),
total_pop - population,
isolation.shape[0],
np.sum(region[lockdown > -1])]]), axis=0)

if (t+1)%28==0:
distribution = np.append(distribution, wd_spread0.reshape((SEGMENT LEN([city], 1)), 1)

# policy trigger
if trigger !=-1:
if trigger == -2:
if summary[-1, 3] > 0:
trigger = 28 * policy0[0]
elif trigger == 0:  # trigger policies
policy[:] = policyO[1:]
if policy[0] > 0:  # remove current clinical cases
temp = status[:, 0] ==
if policy[0] > 3:
temp = np.logical and(np.logical and(status[:, 0] > 1, status[:, 0] <5),
np.isin(sample[:, 1], sample[temp, 1]))
wd_spread2 -= np.bincount(sample[temp, 2], infective[temp],

SEGMENT LEN[city]).astype('int32')

2))

for i in np.argwhere(temp).flatten():
wd_spread][trace[i]] -= infective[i]
if policy[0] > 1:
h_infection -= np.bincount(sample[temp, 4], infective[temp], household).astype('int32")
# isolation and remove
isolation = np.append(isolation,
np.append(status[np.ix_(temp, [0, 1])].reshape((np.sum(temp),

sample[temp, 1].reshape((np.sum(temp), 1)), 1), 0)
sample = np.delete(sample, temp, 0)
status = np.delete(status, temp, 0)
trace = np.delete(trace, temp, 0)
infective = np.delete(infective, temp, 0)
population = sample.shape[0]
mask out, mask in =[(0.98, 0.98), (0.99, 0.98), (0.99, 0.99)][policy[1]] # masks
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if policy[3] > 0:
all_lock =240
temp = sample[:, 0] <2
temp2 = np.logical _and(temp, status[:, 0] > 1)
wd_spread2[sample[temp2, 1]] += infective[temp2]
wd_spread2[sample[temp2, 2]] -= infective[temp2]
for i in np.argwhere(temp).flatten():
if status[i, 0] > 1:
wd_spread][trace[i]] -= infective[i]
templ = sample[i, 1]
trace[i] = neighbours[n_index[templ]:n_index[templ + 1]]
if status[i, 0] > 1:
wd_spreadl[trace[i]] += infective[i]
trigger -= 1
else:
trigger -= 1

# export summary
np.savetxt(r'Log\temp\summary { } .txt'.format(number), summary, fmt="%d', delimiter="',
header="Susceptible, Exposed, Preclinical, Clinical, Subclinical, Removed")
if distribution.shape[1]1==0: # avoid the bug that distribution is empty when time is too short
distribution = np.append(distribution, wd_spread0.reshape((SEGMENT_LEN][city], 1)), 1)
np.savetxt(r'Log\temp\distribution { } .txt'.format(number), distribution, fmt='%d', delimiter=',’,
header="Week")

end = time.time()
print('Sub-Model {} ended in {} seconds. {} seconds per loop. t = {}.".format(
number, end - start, (end - start) / t, t))

Const.py

class City:
LONDON =0
BEIJING =1

PRE FILE = {

City. LONDON: {
'segment”: r'PRE\SegmentLondon.csv',
'station path": r'PRE\StationLondon.txt',
'neighbours': r'PRE\NeighbourlndexLondon. txt',

1

City.BEIJING: {
'segment”: r'PRE\SegmentBeijing.csv',
'station path': r'PRE\StationBeijing.txt,
'neighbours': r'PRE\NeighbourlndexBeijing.txt',

}

MEMORY _SIZE = {

City. LONDON: {
'destinations": (12054,),
'region': (65239,),
'station_path'": (228356,),
'station_path index': (65240,),
‘neighbours': (342343,),
‘neighbours_index': (65240,),
'sample': (332570, 5),
'status': (332570, 3),

}s

City.BEIJING: {
'destinations': (84676,),
'region': (188660,),
'station_path': (1110436,),
'station_path_index": (188661,),
'neighbours': (1040460,),
‘neighbours_index': (188661,),
'sample': (997457, 5),
'status": (997457, 3),
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1

}
AGE = {
City. LONDON: [0.16, 0.75, 0.09],
City.BEIJING: [0.08, 0.46, 0.46],
}

HOUSEHOLD SIZE = {
City.LONDON: [0, 0.26, 0.57, 0.74, 0.92, 0.98, 1],
City. BEIJING: [0, 0.236, 0.552, 0.803, 0.908, 1],

h
SEGMENT_LEN = {City. LONDON: 65239, City.BEIJING: 188660}

BASIC RATE =0.98 #rate of infection
BETA =22 #fix argument for acquaintance

Execution and Data Processing

Repeat.py
import main9
if _name ==' main_ "
for i in range(0, 100):
print(i)

main9.base(i, (0, 0, 0, 0, 0), r'"Backup\basic model\\")

Data Process.py

import numpy as np

number = 100
loc = r'Backup\CN-lag('
brief = np.loadtxt(r'Log\{ } \brief\brief-seed0.csv'.format(loc), delimiter=",', skiprows=1, dtype='float', encoding="utf-8")
for i in range(1, number):
temp = np.loadtxt(r'Log\{ } \brief\brief-seed { } .csv'.format(loc, i), delimiter="", skiprows=1, dtype='float’,
encoding="utf-8'")
if temp.shape[0] > brief.shape[0]:
brief = np.append(brief, np.tile(brief[-1], (temp.shape[0] - brief.shape[0], 1)), 0)
else:
temp = np.append(temp, np.tile(temp[-1], (brief.shape[0] - temp.shape[0], 1)), 0)
brief += temp
brief /= number
np.savetxt(r'Log\{ } \brief\brief.txt'.format(loc), brief, fmt="%d', delimiter=',', header='"New cases, Current clinical
cases, Isolatied cases, Lockdown")

Pre-computation

Neighbours.py

import numpy as np
import igraph as ig

# Produce one-step-neighborhood list

# columns: 0.geoid
segment = np.loadtxt(r'PRE\simplified.csv', delimiter=",', skiprows=1,
dtype="int32', encoding="utf-8', quotechar="", usecols=1)

# columns: 0.from, 1.to

94



link = np.loadtxt(r'PRE\Link.csv', delimiter=",', skiprows=1, dtype='int32',

encoding="utf-8', quotechar="", usecols=(0, 1))
graph = ig.Graph(n=len(segment), edges=link[link[:, 0] < link[:, 1]])
neighbors = graph.neighborhood(order=1, mindist=0)

for i in range(len(segment)):
#ifi % 100 == 0:
# print(i)
with open(r'PRE\NeighbourIndex.txt', 'at+') as f:
f.write(str(neighbors[i]))
f.write("\n')

Station.py

import numpy as np
import igraph as ig

# This is to save the shortest path from each segment to its nearest station.

# columns: 0.geoid, 1.whether this segment has any station
segment = np.loadtxt(r'PRE\simplified.csv', delimiter=",', skiprows=1,
dtype="int32', encoding="utf-8', quotechar="", usecols=(1, 5))
# columns: 0.from, 1.to
link = np.loadtxt(r'PRE\Link.csv', delimiter=",', skiprows=1, dtype='int32',
encoding="utf-8', quotechar="", usecols=(0, 1))
graph = ig.Graph(n=len(segment), edges=link[link[:, 0] < link[:, 1]])
stations = segment[segment[:, 1] ==1, 0]

# find path
for i in range(len(segment)):
if i % 100 ==0:
print(i)
path =]
dis = 9999
temp = graph.get shortest paths(v=i, to=stations, output="vpath')
for j in range(len(temp)):
if len(temp[j]) < dis:
dis = len(temp[j])
path = temp[j]
with open(r'PRE\Station.txt', 'a+') as f:
f.write(str(path))
f.write("\n")
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